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Abstract: The Darcy- Forchheimer equation is the most common model used in 

describing porous media flow. Many CFD pre-packaged platforms offer this model 

via the modified Navier- Stokes equations and typically implement the model under 

a penalization scheme. Although the theoretical basis of the Darcy-Forchheimer 

equation is unquestionable, its use is dependent on introduced coefficients which 

vary with practical applications. Despite a general range of values, the selection of 

these coefficients is somewhat subjective in saturated cases. For transient 

unsaturated flow cases, the selection of these coefficients may even be further 

complicated. This research experimentally investigated the inherent nature of these 

Darcy-Forchheimer coefficients for unsaturated flows in naturally occurring porous 

media. The results suggest variability of these coefficients with the transient nature 

of this flow regime. Thus, highlighting the invalidity of a single combination of 

coefficients across the entirety of unsaturated flows in natural porous media.      

Keywords: Darcy- Forchheimer coefficients, Natural porous media, Unsaturated 
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1. Introduction 

Porous materials can be found almost everywhere in both the manmade and natural environment. 

Indeed, all materials have varying degrees of porosity, the only exceptions may be considered as 

either being metals, plastics and extremely dense materials. Coupled with the well-known fact that 

70% of the earth surface is covered by water, porous media flow has attracted much attention from 

a historical context. In general, these flows can be divided into several subdivisions; unsaturated 

or saturated, steady or unsteady as well as linear or non-linear. Of these, many researchers have 

devoted significant efforts to better understand and reveal the processes for the saturated case.  

For saturated- steady flows, at a macroscale, earliest works can be dated to Henry Darcy 1865 for 

the linear subdivision whilst the nonlinear case was developed by Phillip Forchheimer (1901); the 

results are the well-known Darcy and Forchheimer equations respectfully. Both equations have 

been successfully applied with the use of empirical coefficients which vary with porous media. 

However, it should be noted that in the absence of experimental determination, the Forchheimer 

introduced coefficient is less well universally described by universal models [1].   

For saturated-unsteady cases, modifications to the Darcy’s and Forchheimer’s law have been 

developed by the addition of an acceleration term for both linear and non-linear cases. An empirical 

coefficient is also applied to this added acceleration term and is typically found via empirically 

based predictive models. Despite reasonable applications of both the modified Darcy’s and 
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Forchheimer’s laws, a single combination of the inherent empirical coefficients evident from the 

steady case as well as the added empirical coefficient for the unsteady modified term, may not be 

valid over the entirety of a transient saturated problem [2]. Zhu (2016),([3]), highlighted this for 

nonlinear cases where a sudden step change in pressure gradient is evident. Thus, the application 

of the modified Forchheimer’s Laws for saturated unsteady non-linear flows are complex due to 

the transient nature of the empirical coefficients evident in such cases. 

Unsaturated porous flows are generally modelled by the modified Forchheimer’s law can be 

readily applied. Its application, already complex for saturated case, may be further exacerbated 

due to a differing nature of coefficients variability as media water content varies for these flows. 

Moreover, depending on the media characteristic pore size and material constitution, the effects of 

negative suction pressure may become noticeable. Undoubtedly, the application of the modified 

Forchheimer’s law for describing unsaturated flows are uncertain and multiplex. Despite this, a 

few researchers (e.g. [4] and [5]) have had relative success in applying the modified Forchheimer’s 

equation to such cases. It should be noted however, this was generally achieved via numerical 

experimentation which involved varying a single combination of the Forchheimer’s coefficients 

which best described the problem at hand.  

This paper seeks to investigate the nature of the Forchheimer’s coefficients for unsaturated flows 

in natural homogenous porous media. More specifically, the authors attempt to ascertain the 

validity of utilizing a single combination of coefficients over the entirety of an unsaturated flow 

problem, as well as the significance of each component of the Forchheimer’s equation for such 

flows. Section 2 gives the theoretical background and equations typically used in describing porous 

media flow. Section 3 outlines the experimental set-up & method used to investigate the 

coefficients for unsaturated cases. Section 4 provides the results obtained and analysis of 

observable trends. Finally, Section 5 provides concluding remarks. 

2. Background and Theory 

The Darcy’s law, Eq. (1), was obtained in 1865 upon an experimental basis for saturated-steady-

linear porous media flows at very low pore Reynolds numbers (Rep) given by Eq. (2). In such 

flows viscous forces dominate, hence Eq. (1) utilizes this basis in outlining a linear relation 

between the average porous media flow velocity (Up) and the driving pressure difference (P) 

across the media. The law employs a permeability coefficient (K) which varies with porous media 

and may range from O(h)= 10-5 m2 to 10-20 m2 depending on the media in question [6]  

∇P = - 
μ

K⁄ ∙Up      (1) 

 

Rep =
ρ Up δ

μ⁄       (2) 

Where  is the dynamic viscosity,  is the density of the fluid flowing through the porous media 

and  is the characteristic pore size of the media. As infiltration velocity increases, contributions 

due to inertial effects become evident and the transition from saturated- steady-linear to saturated-

steady-nonlinear flows occur. In general, Eq. (1) is valid for Rep < 1[7] whilst the transition 

between the mentioned occurs in the range 1< Rep  <10 [6]. For saturated-steady porous media 

flows beyond Rep = 10, the Forchheimer equation, Eq. (3), becomes valid where a quadratic 

velocity term is added to account for any momentum imbalance attributed to inertial effects.   
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∇P = - 
μ

K⁄ ∙Up  -β ∙ ρ ∙ Up|Up|     (3) 

 

Where  is the Forchheimer’s coefficient.  

For saturated-unsteady flows, a phase shift between P and Up can exist [8].  Modifications of Eq. 

(1) and Eq. (2) via an added time derivative of Up term is introduced to account for this occurrence, 

yielding the unsteady Darcy equation, Eq. (4), and unsteady Forchheimer equation, Eq. (5), 

respectfully. 

∇P = -
μ

K⁄ ∙Up  - c∙
∂(Up)

∂t
⁄     (4) 

 

∇P = -
μ

K
∙Up  -  β∙ρ∙Up|Up|  - c∙

∂(Up)
∂t

⁄     (5) 

Where c is an inertia coefficient factored to the acceleration term. For saturated-unsteady cases, 

an assumption of constant K and  equivalent to their saturated-steady values is commonly made. 

The coefficient c however, has proven to be more challenging where no consensus on a 

standardized expression across all porous media has yet been achieved. Furthermore, it is still 

unclear whether a single combination of K,  and c is capable of describing saturated-unsteady 

and non-linear flows to an acceptable degree [3]. 

Unsaturated porous flows, are unsteady and non-linear, thus highlighting Eq. (5) in such cases.  

However, the uncertainties of K,  and c becomes further compounded for such flows.  Further, 

depending on the porous medium, the effects of an additional suction pressure may become 

significant.  The Richard’s equation, Eq. (6) – (vector differential form), describes the movement 

of water for such flows and accounts for this additional pressure along with its variation with the 

transient water content of the media. 

ρ∙ ∂θ
∂t⁄ =∇∙[Kh(ψ

m
)(∇ψ

m
+g Ẑ)]          (6) 

Where θ is the volumetric water content of the media, ψm is the matric potential, Kh(ψm) is the 

hydraulic conductivity of the media at matric potential ψm, g is acceleration due to gravity and Ẑ 

is the unit vector in the vertical direction. Equation (6) is qualitatively consistent with predictions 

from Eq. (1) [9], and typically used for transient soil-based processes such as infiltration and 

evaporation. It should be noted that negative suction pressures are generally associated with fine 

grain soils where flows do not transition beyond the viscous dominated regime. Nonetheless, a 

combined generic equation for unsaturated porous flows is proposed via Eq. (7) where respective 

terms may become invalid depending on the flow scenario and media.   

[∇ψ
m

+ g Z ̂+ ∇ψ
e
]=  A1∙Up + B2∙Up|Up| + C3∙

∂(Up)
∂t

⁄      (7) 

Where the ensembled contributions due to the Forchheimer coefficients are: A1 (units: t-1), B2 

(units: t/L) and C3 (dimensionless), ψe is an acceleration due to an externally applied potential. It 

should be noted all terms on the left-hand side of Eq. (7) are expressed in terms of an acceleration. 
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3. Experimental Set-up and Data Processing 

Investigating unsaturated porous media flow problems are rare. Consequently, with the exception 

of matric suction apparatus, no general specialized equipment exists for such flows. Resultantly, 

experiments were developed which would allow some degree of control whilst permitting the 

measurement of key variables as flow developed.    

The experiments were carried out in the Soils Laboratory of the Civil & Environmental 

Engineering Department at the University of the West Indies, St. Augustine Campus. A transparent 

vertical square column of side width 0.1m and length 0.5m open at one end and fitted with a wire 

mesh at other was used as shown in Fig. 1.  The column was partitioned with a removable water 

tight gate midway of the channel length which separated the column into two sections. The lower 

section was completely filled with dry homogenous coarse grain material and kept in place by the 

fitted wire mesh. The above section was filled to a desired water depth and prevented from entering 

the porous media by the removable gate.  

 

 

Figure 1: Laboratory experiment set-up 

 

The experiments involved removing the gate at high speed, thereby allowing the above water to 

infiltrate into the unsaturated porous media. High frame rate videos were taken along the 

transparent walls of the column and specifically monitored the water front progression through the 

porous media as well as the progressive decrease of the water depth elevation in the above section. 

Video observations were referenced against 0.0025m gradations in the direction of flow which 

was zeroed at the gate location. The experiments were carried out for four different natural 
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homogenous porous media with properties as outlined in Table.1, each at 25 different initial 

infiltrating water depths ranging from 0.03-0.2m.  

 

Table. 1: Porous media and properties used in experiment 

Porous 

media 

Size Range 

(mm) 

D50 

(mm) 
Porosity Classification 

Saturated Hydraulic 

Conductivity/Kh 

(cm/s) 

A 4.75-2.36 3.40 0.487 fine-very fine pebbles 3.75 

B 2.00-1.40 1.75 0.425 very coarse sand 1.63 

C 1.40-1.00 1.20 0.369 
very coarse – coarse 

sand 
1.13 

D 0.85-0.71 0.80 0.309 coarse sand 0.75 

 

Time referenced images were extracted from video observations at a frequency of 20Hz. Both the 

temporal progression of the infiltrating water front (within the porous media) and the decreasing 

Still Water Line (SWL) level (in the reservoir above) were used to calculate the instantaneous 

depth-averaged flow velocity of the media (Up). This was accomplished via visually observing the 

location change of each water front with time, thus yielding the exact velocity at these locations. 

A weighted averaging, zero-referenced at the gate location as outlined in Fig. 2 and computed via 

Eq. (8), was then used to acquire Up for the corresponding infiltrated water depth (DInf) and 

pressure head (H). 
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Figure 2: Measurements used in calculation of Up 

 

Up(H,DInf) = 

[(
(H+∆h)-(H-∆h)

(t+∆t) - (t-∆t)⁄ ) ∙DInf  + (
(DInf+∆DInf)-(DInf - ∆DInf)

(t+∆t) - (t - ∆t)⁄ ) ∙H ]

(DInf + H)
⁄

     

 (8)  

The temporal variation of Up is dependent on both DInf and H. Thus, the acceleration term in Eq. 

(7) is also dependent upon these values. Utilizing computed values of Up at various H and DInf 

combinations, the acceleration term in Eq. (7) was then obtained via a simple central differencing 

of Up given by Eq. (9).  

 

∂Up(H, DInf)
∂t

⁄  = 
[Up(H - ∆h, DInf + ∆DInf)  -   Up(H+∆h, DInf - ∆DInf)]

2∆t
⁄        (9) 

 

Where: Up(H - ∆h, DInf + ∆DInf) is the instantaneous depth-averaged porous media velocity for 

pressure head: H - ∆h and infiltrated depth: DInf + ∆DInf occurring at time: t+∆t. Similarly, 

Up(H + ∆h, DInf - ∆DInf) is the instantaneous depth-averaged porous media velocity for pressure 

head: H + ∆h and infiltrated depth: DInf - ∆DInf occurring at time: t - ∆t. 

Assuming negligible suction pressure due to the coarse-grained composition of the porous media 

(ψm=0), all but the coefficients in Eq. (7) were obtained. An analysis of the Forchheimer’s 

coefficients via substitution of known values of Up, flow acceleration and pressure head into Eq. 

(7) was then pursued. Differing combinations of corresponding Up, flow acceleration and pressure 

head were used to yielding a solvable linear system of equations from Eq. (7). As a result of the 

three coefficient unknowns (A1, B2 and C3), a selection of three combinations of these values were 

needed. The experimental methodology outlined was subjected to a few limitations. The most 

critical of these were due to the non-instantaneous removal of the gate, surface tension effects 

between the fluid and the walls of the column as well as any non-uniformity within the media 

which may have affected local porosity and thus flow. Hence, the results obtained would reflect 

the cumulative effect of these constraints which emanate from the experimental procedure. 

4. Results and Analysis 

The results outlined velocity observations qualitatively similar to those expected from Eq. (1) and 

Eq. (3) – Eq. (7) where a general power law profile is observed when varying Up with DInf. 

Moreover, consistent with popular infiltration models, the results outlined a tendency of Up to 

converge to the saturated Kh values as DInf increased, irrespective of the driving pressure head. 

Characteristic plots are provided in Fig. 3.  
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Direct representative results for porous media B and D are provided in Table. 2 – section A and 

Table. 3 – section A respectively. The results provide computed Up and flow acceleration values 

for 12 ψe pressures across 3 DInf values for each media. Section B of Table. 2 and Table. 3 presents 

computed A1, B2 and C3 ensembled coefficient values obtained via linear systems from Eq. (7) and 

the values presented in Section A of the relevant tables. Section B of both tables highlight the 

sensitivity of the Forchheimer’s coefficients to both the instantaneous driving pressure head and 

DInf. At a constant DInf value, differing driving pressures yielded different linear systems, which 

when resolved resulted in varying coefficient values. Similar observations were noted for converse 

systems where ψe was held constant and DInf varied. 

Negative coefficient values were also observed across most cases. These values are considered 

unrealistic since they factor each term on the right-hand side of either Eq. (7), each of which 

addresses different aspects in porous media flows. These overall factored terms should not 

contradict nor subtract from each other, but rather become active and add to the shortcomings of 

previous terms, hence highlighting a negative combination as unrealistic. Moreover, such values 

are deemed to be the result of two main effects: (1) Inaccuracies in computing Up due to the visual 

method adopted. (2) The result of solving the linear system mathematically without imposing any 

realistic bounds upon A1, B2 and C3. 

 

Figure 3: (a) Porous media A - Up variation with Infiltrated depth for ψe ranging 2-12 cm (b) 

Porous media B - Up variation with Infiltrated depth for ψe ranging 2-12 cm (c) Porous media C - 

Up variation with Infiltrated depth for ψe ranging 2-12 cm (d) Porous media D - Up variation with 

Infiltrated depth for ψe ranging 2-12 cm 

Noting error mitigation could not be improved due to the experimental methodology, only an 

analysis with assumed bounded coefficient values could be pursued. Firstly, the ensembled A1 

coefficient is directly related to the hydraulic conductivity (Kh) of the porous media. Kh is 
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understood as constant value for a fully saturated media. However, for coarse-grained materials, 

Kh values may differ between the saturated and unsaturated case [9]. Nonetheless, a constant A1, 

equivalent to the saturated value outlined in Table. 1, is assumed valid for the unsaturated regime. 

Secondly, due to the high porosity of each media used in the experiments, coupled with the smooth 

variation of ψe as water infiltrated each media, the occurrence of any phase-lag between ψe change 

and Up can be assumed negligible. Thus, the C3 coefficient is assumed to be zero (C3=0). 

Resultantly, Equation (7) simplifies to an analysis of B2 under such assumptions, resolvable by 

any single combination of ψe and Up in Section A of Table. 2 and Table. 3, without the need for a 

linear system. The computations for which are presented in Section C of the respective tables. 

A comparison between the ensembled coefficients in Sections B and C of Tables. 2 and 3 highlight 

positive and more realistic values as a result of the assumptions made. Therefore, as is evident in 

saturated applications, coefficient values must be directly linked and hence bounded to some 

physical basis and not selected solely upon best fit numerical experimentation. Despite improved 

results, Section C of both Tables. 2 and 3 highlight the high variability of B2 as both ψe and DInf 

varied. For all media, variations ranged over O(h)=101 where no general variation trend was 

observed. Hence, for the simplifying assumptions made, it can be stated that a constant value of 

the B2 coefficient is invalid for the entirety of unsaturated coarse-grained flows.  

 

 

Table 2: Experimental results and computed Forchheimer coefficients for porous media B  

Section A Section B Section C 

DInf 

(cm) 

ψe 

(cm) 

Up  

(cm/s) 

∂(Up)

∂t
 

(cm/s2) 

Case 

No. 

A1 

(s-1) 

B2 

(sm-1) 
C3 

Cases 

used 

A1 

(s-1) 

B2 

(sm-

1) 

C3 

2 

3.75 4.09 -19.7 1 715.29 -722.38 -609.38 2,3,4 594.30 23.44 0 

3.90 4.13 -20.11 2 739.75 -741.77 -620.79 1,3,4 594.30 26.18 0 

4.00 4.15 -20.39 3 803.53 -788.97 -647.71 1,2,3 594.30 27.92 0 

4.25 4.21 -21.12 4 757.01 -754.97 -628.44 1,2,4 594.30 32.01 0 

7.75 5.36 -34.84 5 362.82 -143.52 -199.74 6,7,8 594.30 55.85 0 

7.90 5.42 -35.57 6 359.38 -145.82 -202.16 5,7,8 594.30 55.84 0 

8.00 5.46 -36.07 7 352.62 -151.33 -207.75 5,6,7 594.30 55.81 0 

8.25 5.57 -37.33 8 357.27 -147.37 -203.77 5,6,8 594.30 55.62 0 

11.75 7.36 -58.51 9 707.05 -49.97 -72.54 10,11,12 594.30 43.99 0 

11.90 7.45 -59.56 10 702.14 -50.53 -73.67 9,11,12 594.30 43.32 0 

12.00 7.51 -60.27 11 691.32 -51.87 -76.27 9,10,11 594.30 42.87 0 

12.25 7.66 -62.07 12 698.95 -50.91 -74.42 9,10,12 594.30 41.73 0 

5 

3.75 2.83 -3.99 13 -550.78 742.50 669.07 14,15,16 594.30 5.01 0 

3.90 2.85 -4.07 14 -541.85 734.13 658.59 13,15,16 594.30 6.82 0 

4.00 2.87 -4.13 15 -523.90 716.53 636.01 13,14,15 594.30 7.98 0 

4.25 2.91 -4.28 16 -536.33 728.83 651.88 13,14,16 594.30 10.74 0 
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7.75 3.54 -7.15 17 2012.83 
-

1190.67 

-

1439.07 
18,19,20 594.30 32.21 0 

7.90 3.57 -7.31 18 2090.04 
-

1253.21 

-

1510.40 
17,19,20 594.30 32.59 0 

8.00 3.59 -7.41 19 2298.98 
-

1421.10 

-

1701.07 
17,18,19 594.30 32.83 0 

8.25 3.64 -7.68 20 2145.35 
-

1297.83 

-

1561.18 
17,18,20 594.30 33.36 0 

11.75 4.42 -12.15 21 835.55 -176.24 -249.56 22,23,24 594.30 34.27 0 

11.90 4.45 -12.37 22 837.59 -178.83 -252.97 21,23,24 594.30 34.12 0 

12.00 4.48 -12.52 23 842.73 -185.00 -261.01 21,22,23 594.30 34.01 0 

12.25 4.54 -12.9 24 839.00 -180.57 -255.25 21,22,24 594.30 33.73 0 

10 

3.75 1.84 -0.58 25 2277.84 -933.12 -540.49 26,27,28 594.30 76.72 0 

3.90 1.84 -0.61 26 2282.69 -935.85 -540.97 25,27,28 594.30 80.70 0 

4.00 1.84 -0.63 27 2293.37 -941.76 -541.57 25,26,27 594.30 83.22 0 

4.25 1.85 -0.69 28 2285.84 -937.60 -541.21 25,26,28 594.30 89.06 0 

7.75 2.16 -2.01 29 1231.54 -269.74 -168.27 30,31,32 594.30 97.96 0 

7.90 2.19 -2.09 30 1238.19 -275.11 -173.61 29,31,32 594.30 95.95 0 

8.00 2.2 -2.15 31 1255.08 -288.12 -185.70 29,30,31 594.30 94.56 0 

8.25 2.25 -2.28 32 1242.83 -278.76 -177.11 29.30,32 594.30 90.87 0 

11.75 3.09 -4.75 33 1099.71 -70.74 123.87 34,35,36 594.30 31.83 0 

11.90 3.13 -4.88 34 1098.57 -71.72 121.16 33,35,36 594.30 29.60 0 

12.00 3.17 -4.96 35 1096.45 -74.08 115.04 33,34,35 594.30 28.15 0 

12.25 3.25 -5.18 36 1097.88 -72.38 119.38 33,34,36 594.30 24.61 0 

 

 

 

Table 3: Experimental results and computed Forchheimer coefficients for porous media D 

Section A Section B Section C 

DInf 

(cm) 

ψe 

(cm) 

Up  

(cm/s) 

∂(Up)

∂t
 

(cm/s2) 

Case 

No. 

A1 

(s-1) 

B2 

(sm-1) 
C3 

Cases 

used 

A1 

(s-1) 

B2 

(sm-1) 
C3 

2 

3.75 1.77 -3.30 37 161.63 1128.25 307.13 38,39,40 1307.47 161.59 0 

3.90 1.80 -3.41 38 158.96 1133.71 310.89 37,39,40 1307.47 169.39 0 

4.00 1.82 -3.49 39 153.88 1145.59 319.48 37,38,39 1307.47 174.35 0 

4.25 1.86 -3.69 40 157.35 1137.23 313.37 37,38,40 1307.47 185.96 0 

7.75 2.42 -7.34 41 517.55 698.04 75.17 42,43,44 1307.47 278.53 0 

7.90 2.44 -7.54 42 512.13 702.82 77.19 41,43,44 1307.47 280.81 0 

8.00 2.46 -7.67 43 500.11 713.71 81.90 41,42,43 1307.47 282.29 0 

8.25 2.49 -8.01 44 508.60 705.97 78.54 41,42,44 1307.47 285.84 0 

11.75 2.98 -13.63 45 900.75 412.95 -28.72 46,47,48 1307.47 321.84 0 

11.90 3.00 -13.90 46 896.52 415.57 -27.94 45,47,48 1307.47 323.04 0 
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12.00 3.01 -14.09 47 886.95 421.62 -26.09 45,46,47 1307.47 323.83 0 

12.25 3.04 -14.57 48 893.75 417.31 -27.42 45,46,48 1307.47 325.78 0 

5 

3.75 1.10 -0.39 49 203.08 1584.98 1104.99 50,51,52 1307.47 232.93 0 

3.90 1.11 -0.40 50 206.30 1578.78 1094.66 49,51,52 1307.47 240.87 0 

4.00 1.12 -0.40 51 210.83 1567.55 1072.31 49,50,51 1307.47 245.80 0 

4.25 1.14 -0.42 52 208.00 1575.12 1088.03 49,50,52 1307.47 256.89 0 

7.75 1.46 -1.00 53 10317.80 -

10325.1 

-

9399.68 

54,55,56 1307.47 281.57 0 

7.90 1.48 -1.04 54 12290.89 -

12688.3 

-

11545.1 

53,55,56 1307.47 279.13 0 

8.00 1.49 -1.07 55 23117.26 -

25634.0 

-

23273.3 

53,54,55 1307.47 277.42 0 

8.25 1.51 -1.13 56 14138.38 -

14899.2 

-

13550.1 

53,54,56 1307.47 272.84 0 

11.75 1.96 -2.37 57 2137.52 -386.94 -244.33 58,59,60 1307.47 187.74 0 

11.90 1.99 -2.44 58 2141.92 -394.12 -252.36 57,59,60 1307.47 183.88 0 

12.00 2.00 -2.48 59 2152.91 -411.34 -271.27 57,58,59 1307.47 181.32 0 

12.25 2.04 -2.59 60 2144.95 -398.97 -257.74 57,58,60 1307.47 174.96 0 

10 

3.75 0.88 0.00 61 1491.28 50.40 0.00 62,63,64 1307.47 263.97 0 

3.90 0.89 0.00 62 1483.37 59.24 0.00 61,63,64 1307.47 261.90 0 

4.00 0.89 0.00 63 1478.16 65.18 0.00 61,62,63 1307.47 260.44 0 

4.25 0.91 -0.02 64 1495.99 44.88 0.00 61,62,64 1307.47 256.48 0 

7.75 1.15 -0.13 65 -500.91 2304.20 5806.24 66,67,68 1307.47 177.91 0 

7.90 1.17 -0.14 66 -320.52 2102.73 5340.30 65,67,68 1307.47 174.19 0 

8.00 1.17 -0.14 67 -14.31 1760.45 4546.42 65,66,67 1307.47 171.72 0 

8.25 1.19 -0.15 68 -219.20 1989.52 5078.10 65,66,68 1307.47 165.55 0 

11.75 1.49 -0.38 69 1767.74 -212.94 74.30 70,71,72 1307.47 85.92 0 

11.90 1.50 -0.39 70 1771.32 -217.15 63.73 69,71,72 1307.47 82.91 0 

12.00 1.51 -0.40 71 1780.04 -227.32 38.46 69,70,71 1307.47 80.92 0 

12.25 1.54 -0.42 72 1773.76 -220.01 56.60 69,70,72 1307.47 76.02 0 

 

In real life situations a constant Kh value is invalid for the entirety of unsaturated flows, outlining 

the variability of A1 for such cases. Noting the results of Section C which outlined the variability 

of B2 for a constant A1, further variation of B2 is foreseen in cases where A1 is also allowed to 

vary. Thus, further confirming the invalidity of a constant B2 for unsaturated porous flows. 

Although A1 may tend to some constant value as DInf increases, a similar trend may not be observed 

for B2 as the results of Section C for both media show a dependence of B2 on ψe and Dinf. Unlike 

A1 and B2, no meaningful analysis of the C3 coefficient for unsaturated flows can be made. This 

coefficient is the most complex and least understood of the Darcy-Forchheimer coefficients, much 

ambiguity surrounds the nature of this coefficient for saturated unsteady cases [3], thus its effect 

in unsaturated flows are further complex and subject of further research.  

Noting the mentioned, it can be stated that a single combination of A1, B2 and C3 is invalid over 

the entirety of the unsaturated flow regime. Moreover, even for cases where arguable assumptions 

on constant A1 and C3 can be made, the variability of B2 is evident. Finally, the results also confirm 
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the theoretical structure of Eq. (7) where flow acceleration and velocity values increase with 

increasing ψe, whilst an inverse relation exist between both values and Dinf.  

 

5. Conclusion 

The Darcy-Forchheimer’s equation is well known to be the current state of the art in modelling 

saturated-unsteady porous media flows. Despite relatively successful applications to unsaturated 

flows, much ambiguity surrounds the empirical coefficients employed within for such cases. This 

paper examined the nature of these coefficients for such cases via one-dimensional laboratory flow 

experiments on coarse-grained media. The analyzed results underlined the need for realistic 

bounds in the selection of coefficient values for such flows. For cases where simplifying 

assumptions of a constant linear coefficient and zero acceleration coefficient were made, a high 

variability of the quadratic coefficient with pressure head and infiltrated depth was observed. 

Suggesting that for real-life application where such assumptions are not suitable, even greater 

variability of this coefficient can be expected. Unfortunately, no clear-cut relationship was 

observed across any of the coefficients, neither was there any meaningful evaluation regarding the 

significance of each term comprising the Darcy-Forchheimer equation. However, it is 

unquestionably evident that a single combination of the unsteady Darcy-Forchheimer’s 

coefficients is invalid over the entire range of unsaturated coarse-grained porous media flows. 
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