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Abstract: This paper describes the simulated environment that was prepared for validation 

of Cognitive Function Synthesis, or CFS, Autonomy.  The environment was developed 

with the V-REP simulator and assembled around the ‘Eric Rohmer’ Pioneer robot.  The 

simulated robot was configured to act as a Behaviour-Based Robot that is constrained to 

move about the test area, as defined by a state diagram, and based on pre-configured 

reflexes, provided by the Braitenberg algorithm.  Vision sensors, i.e. simulated cameras, 

were found to be better suited to configure these behaviours than light sensor cues.  Initial 

results suggest that the simulated environment may be used for CFS autonomy validation.  

This research marks the first simulated environment produced for investigating CFS 

Autonomy and consequently needs to be further validated.   
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1. Introduction 

Pounder, Ellis, Fernandez-Lopez [1] introduced the Cognitive Function Synthesis (CFS) conceptual 

framework to artificial general intelligence.  CFS postulates that at the “core” of intelligence in hybrid 

architectures, “interdependent” cognitive functions are synthesised through the interaction of various 

associative memory (AM)-based systems.  The authors posit that this synthesis could form an interface 

layer between deliberative/symbolic and reactive/sub-symbolic layers in hybrid cognitive architectures.  

Much research is needed to determine the best way to successfully integrate CFS into each of the 

aforementioned layers and thus validate the framework.  Interfacing CFS with the reactive/sub-symbolic 

layer was determined to be the logical first-step.  The approach used was: determine the impact of CFS on 

the navigation of a simple Behaviour-Based Robot; and compare performance at a specified benchmark 

task with that of a Reactive/Behaviour-Based architecture.  This paper describes the simulated environment 

developed and the benchmark task used to investigate CFS navigation with a Behaviour-Based robot.  

Environment validation was dealt with subsequently.  The paper is structured as follows.  Section 2 gives 

a brief overview of CFS within the field of Artificial Intelligence, or AI.  The criteria used during the 

selection process of candidate robot platforms and simulation software are captured in Section 3.  Section 4 

describes the robot platform selected, the state diagram used to configure the Pioneer robot as a Behaviour-

Based robot as well as some initial results and concludes with Section 5.   

https://doi.org/10.47412/YTRH2545
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2. Cognitive Function Synthesis in the context of AI 

AI typically decomposes intelligence into distinct properties or functions.  These functions are developed 

into independently subsisting autonomous modules, which are finally integrated through interface 

mechanisms to form Multi-Agent Systems or MAS [2, 3].  This approach suggests that intelligence arises 

from the integration of a collection of independently subsisting modules and can be termed the Traditional 

AI Paradigm.  This paradigm has given rise to Symbolic/Deliberative, Sub-Symbolic/Reactive and Hybrid 

AI architectures [4-6].  Nilsson [7] suggests that Hybrid architectures are Traditional AI’s most likely 

candidates for achieving more sophisticated intelligence.  Such architectures require an interface/ 

sequencing layer to integrate a Deliberative/Symbolic layer – for long-term planning – with a Reactive/Sub-

Symbolic layer – for real-time performance [3, 4] – cf. Fig. 1a).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: The Introduction Of Cognitive Functions Into A Generic Hybrid Architecture 
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However, Pounder, Ellis, Fernandez-Lopez [1] note that, as a consequence of the Traditional AI Paradigm, 

integration challenges arise at all levels of AI, in general and in Artificial General Intelligence, or AGI, 

Hybrids in particular.  In the latter architectures, cognitive functionality is introduced as independently 

subsisting cognitive modules at the symbolic and sub-symbolic levels, cf. Fig. 1b, but are usually 

subordinated to other intelligence modules.  The authors claim that this may be the result of inadequate 

decomposition of intelligence and introduce the Cognitive Function Synthesis, or CFS, paradigm.  CFS 

posits that cognitive functions might be implemented as ‘interdependent’ functions via Associative 

Memories, or AMs, to form an interface layer for hybrid cognitive architectures (c.f. Fig. 1c).   

In light of the above, the CFS Conceptual Framework in Fig. 2 was developed from which the cognitive 

functions of: i) Perceptual Learning or Autonomous Extraction; ii) Consciousness; iii) Imagination; iv) 

Emotions; and v) Autonomous Action emerge.  Pounder, Ellis, Fernandez-Lopez [1] performed 

experiments to investigate CFS display of functions i) to iii).  Preliminary results suggest that the emergent 

properties, i.e. learned reflexes akin to those described by Vernon, Metta, Sandini [8] that arise on the basis 

of pointer-chain sequences, could prove useful to robot autonomy.  Interfacing CFS with the reactive/sub-

symbolic layer was determined necessary to establish plausibility with respect to CFS Autonomy.  Whether 

CFS possesses the requisite characteristics of Deep Learning systems is yet to be investigated [9-11].   

 

 
Figure 35: Cognitive Function Synthesis 

3. Robot Platforms and Simulated Environments Considered 

Prior surveys were used to identify candidate platforms on which to experiment with CFS autonomy.  The 

survey by Hilal, Wagdy, Khamis [12] focused on commercially available robots suitable for use in tertiary 

education institutions.  Kits were grouped into: Building Body Kits; Electronic Components Kits; Software 

Kits; Programmable Robots; and Complete Starter Kits.  Subsequently, Ruzzenente, Koo, Nielsen [13] used 

a similar approach, but sub-divided non-versatile kits into: Manipulators; Household Robots; Robotic 

Aircrafts; Humanoid Robots.  They limited their review to robots used in education while focussing on the 
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ease of reuse in the teaching of different subject areas such as electronics, programming or human-robot 

interaction.   

The Robots considered included the: Pioneer Robot 3DX by Adept Mobilerobots; Khepera III and 

Hemisson from K-Team; Roomba Create by iRobot; MiaBot robots by Merlin Systems; Rovio by 

WowWee; and E-Puck by École Polytechnique Fédérale de Lausanne (EPFL); Boe-Bot; Stingray Robot; 

LEGO Mindstorm; VEX; FischerTechnik; and Qfix.  Reviews by Mondada, Bonani, Raemy [14] and 

Junior, Neto, Hernandez [15] also suggested consideration of Robotino by Festo.  More recent surveys, by 

Gyebi, Hanheide, Cielniak [16] and Takacs, Eigner, Kovács [17], identified additional robot platforms not 

considered in the initial analysis.  These surveys were primarily conducted with a view to identify robot 

platforms useful as educational tools for Science, Technology, Engineering and Mathematics support, or 

STEM.  These considerations did not substantially affect the decision to use the Pioneer robot platform for 

experiments in a simulated environment.   

The Microsoft Robotics Developer Studio 4 and the V-REP 3.3.2 (rev 3) simulation packages were 

considered.  V-REP was found to be superior and was installed on a Lenovo P50 64-bit laptop with an Intel 

Core i7-6820HQ, and a 2.7 GHz processor with 32GB RAM.  Code written in C++ with Microsoft Visual 

Studio 10 was used to run the simulator.  The robot simulator was configured to resemble, as much as 

possible, the environment described in experiments conducted with Darwin VII [18].   

4. Description Of Platform And Behaviour-Based Configuration 

The V-Rep supplied ‘Eric Rohmer’ model of Pioneer came pre-configured: wheel joint in force/torque 

mode; motor enabled; and position control disabled.  The Pioneer was configured biomimetically to act as 

a Behaviour-Based Robot.  This was achieved through use of: the Braitenberg Algorithm in conjunction 

with the ultrasound sensors for reflexes; and a cube-targeting reflex in conjunction with vision sensors.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Screenshots of Simulated Composite Robot Platform 

a) PhantomX Pincher manipulator (left) 
with Pioneer 3DX mobile robot 
platform (right) 

b) PhantomX Pincher fitted to Pioneer 3DX 
mobile robot platform with vision 
sensors. 

c) Composite Robot Platform In Simulated Environment.   
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Figure 3a depicts a V-Rep simulator screenshot illustrating one such mobile platform to the right of a 

PhantomX Pincher manipulator.  In these experiments, the manipulator was mounted onto the mobile 

platform as illustrated in Fig. 3b.  Six vision sensors were also mounted onto the composite platform.  Three 

were mounted to the front and two to the back of the mobile platform, while one was affixed onto the 

manipulator.  During these experiments, only the main middle-front vision sensor on the mobile platform 

and the one on the manipulator were used, the latter effectively being utilized as a proximity sensor.  

Figure 3c shows the composite robot in the simulated environment.  To ensure basic biomimetic reflexes, 

the sensory data from both the ultrasound and vision sensors were used in a Braitenberg sense.   

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Ultrasound Sensor Configuration. 

US (Ultrasound Sensor Readings) 

= {US0, US1, US2, US3, US4, US5, …, US9, US10, US11, US12, US13, US14, US15} (13)  

 

Left Motor Coefficient (8 Sensors) 

= {-0.2, -0.4, -0.6, -0.8, -1.0, -1.2, -1.4, -1.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} (14)  

Right Motor Coefficient (8 Sensors) 

= {-1.6, -1.4, -1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} (15)  

Left Motor Coefficient (16 Sensors) 

= {-0.2, -0.4, -0.6, -0.8, -1.0, -1.2, -1.4, -1.6, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} (16) 

Right Motor Coefficient (16 Sensors) 

= {-1.6, -1.4, -1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2} (17) 

 

Ultrasound, or US, Sensor Data from the 16 sensors around the periphery of the Pioneer platform, c.f. Fig. 4, 

is given by Eq. (1).  This permitted an “8 sensor” US configuration, given by Eqs. (2) and (3) and a “16 

sensor” US configuration, given by Eqs. (4) and (5).  Now, the Braitenberg Obstacle Avoidance algorithm, 

readily available with the ‘Eric Rohmer’ sample model of the Pioneer robot in the V-Rep simulator, used 

Eqs. (6) to (9) with: sensor data from the front “8 sensors” i.e. Eqs. (2) and (3); and coefficients from the 

‘Obstacle Avoidance’ column of Table 1.  However, the simulated Pioneer robot provided was not equipped 
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with either bumpers or proximity sensors on which to base a ‘Contact/Collision’ reflex system that would 

be engaged when the robot was in close proximity to enclosure walls/borders.  Additionally, the Pioneer 

robot, being a differential drive platform, would experience constrained manoeuvrability when making 

direct contact with the walls of the enclosure, often limiting robot ability to extricate itself from ‘tight spots’.  

Being the most essential preconfigured motor primitive for the robot platform, a ‘Contact/Collision’ reflex 

system was obtained by adjusting the coefficients of the Braitenberg Obstacle Avoidance Algorithm, which 

came originally with the Pioneer simulation, to that specified in the ‘Contact/Collision’ column of Table 1.  

Initial trials using the ‘Contact/Collision’ reflex system with the “8 sensor” US configuration produced a 

‘sluggish’ response that made the robot seem insensitive to its proximity to the enclosure, from an 

observer’s perspective, and was due to insufficient sensor coverage of the rear of the platform.  

Consequently, as outlined later in this paper, consideration was then given to the “16 sensor” US reflex-

configuration.   

Table 1: Parameters for Detection Value used in Braitenberg algorithm 

 Obstacle Avoidance Contact/Collision 

No Detect Limit 

(No Detection Limit) 
0.5 0.2 

Max Limit 

(Maximum Detection Limit) 
0.2 0.1 

 

 Braitenberg (US) Left Motor  = Σ  Left Motor Coefficient k x Detection k (18) 

 Braitenberg (US) Right Motor  = Σ  Right Motor Coefficient k x Detection k (19) 

 Detection k = (1 - Detection Factor k) (20) 

 

 

Detection Factor k =    (21)  
 

 

 

Early attempts to configure robot behaviour based on light sensors were abandoned due to difficulty in 

using diffused light as cues.  The images captured from the main vision sensor were subjected to 

segmentation such that dark-ranged colours and a bright range of colours were used to develop cues in a 

Biomimetic sense.  The state diagram governing the platform’s ‘Reactive’ behaviour is presented in Fig. 5.  

In states 2, 4, 8 and 12, the vision sensor output was partitioned such that the number of dark-ranged pixels 

on the left side of the image determined the output of the right motor and vice-versa as follows.  In the “go 

to dark” states 2 and 8 the sum of dark coloured pixels just to the left and right of the centreline of the image 

was used to determine output of the right and left motor respectively.  In the “dark on periphery” states 4 

and 12 the sum of dark coloured pixels on the extreme left and extreme right of the image centre was used 

to determine output of the right and left motor respectively.   

Similarly, in Roaming State 1, if a cube were within the robot’s Field of Vision, FOV, the number of bright-

ranged pixels on the right side of the image determined the output of the left motor and vice-versa.  This 
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allowed the robot to move toward the cube while the manipulator would descend to a standby position to 

grab the cube.  When the cube is within the pincers of the manipulator, the vision-sensor based proximity 

switch triggers it to enclose the cube and place it on the platform’s back.  Cubes may be: Vertically-striped; 

Horizontally-striped; dotted or without a pattern, c.f. Fig. 6.  In the absence of a cube, in state 1, both motors 

are equally powered pushing the robot forward.  States 6, 7, 10 and 11 ensured that  

 
Figure 38: State Diagram Describing Preconfigured Reflexes For BBR 

 

 
a) Blank b) Vertical Stripes c) Horizontal Stripes d) Dots 

Figure 39: Patterns on cubes used in this experiment. 
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the robot never ventured too far beyond the enclosed area.  Once beyond the extremities of the enclosure, 

a pre-set value is applied to one of the motors to ensure that it turned to face the entrance to the enclosure.  

State 5 and 0 were used to facilitate the manipulator’s return to its default position and remain immobile 

for a 10-cycle rest period.  In states 3 and 9, on the robot’s return to the recesses of the enclosure, the motors 

are powered equally to provide a constant speed to the robot.  Once the ‘Obstacle Avoidance’ algorithm is 

activated, depending on its effectiveness, the robot should navigate within its environment without coming 

into contact with the enclosure walls.  In the absence of this algorithm, the ‘Contact/Collision’ reflex system 

would enable the platform to operate autonomously, despite contact with enclosure.   

Note that the Braitenberg Algorithm has a tendency to eventually get stuck in local minima.  Two measures 

were used to resolve this problem.  In the first instance, should the robot grind to a near halt, a ‘shock’ 

treatment in which an instantaneous boost of high power activating the wheel motors in opposing senses is 

applied to disengage the robot.  Additionally, states 13 and 14 were introduced to transition the robot out 

of states 3 and 1, respectively, should they enter into these minima.  Once navigation autonomy can be 

achieved, performance measures could then be used to compare Obstacle Avoidance algorithms.   

 

Figure 40: Robot Path a) Without Obstacle Avoidance (i.e. Basic Reflexes Only) 

and b) with Braitenberg Obstacle Avoidance 

 

Figure 7a shows sample results illustrating the robot’s path when operated: in ‘Contact/Collision’ reflex 

mode only, i.e. without Obstacle Avoidance.  This demonstrates the platform’s navigation autonomy in the 

absence of the Obstacle Avoidance behaviour.  Notice the ‘sluggish’ “8 sensor”-configuration response that 

prompted consideration of employing the “16 sensor” US configuration.  Figure 7b shows a sample result 

with Braitenberg ‘Obstacle Avoidance’.  These preliminary results suggest that the simulated environment 

has potential for being used as a tool for comparing Obstacle Avoidance algorithms in robot navigation.  

An obvious gauge to measure the success of an Obstacle Avoidance algorithm is to equate lower frequency 

of contact/collision with improved performance.  Nevertheless, other metrics may also be used.   

One of CFS’s claims is its ability to learn to avoid obstacles without being equipped at manufacture with a 

readily designed behaviour to this end.  As such, validation requires comparison of CFS performance 

against platforms operating with and without Obstacle Avoidance algorithms.  A simulated environment 

operating autonomously in all scenarios, such as the one presented here, is ideal for this purpose.  

However, to be used in this manner, it needs to be established whether the difference in observed 

performance in Fig. 7 was statistically significant.  This will be considered in a subsequent paper.   
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5. Conclusions 

After an initial summary of the CFS framework, the criteria followed in the selection of a robot platform 

and simulation software was presented.  The V-Rep simulator was chosen and the main features of the 

simulated environment, which was developed for validation experiments with CFS autonomy and 

assembled around the ‘Eric Rohmer’ Pioneer robot, were described.   

In the process of configuring the robot to navigate autonomously in the simulated environment as a 

Behaviour-Based robot, the use of diffused light to trigger light sensors to effectively coordinate behaviours 

was found to be challenging.  Instead, vision sensors, or virtual cameras, were used in conjunction with 

ultrasound sensors, and the data captured was subjected to the Braitenberg algorithm.  Reflex behaviours 

designed included: ‘Contact/Collision’ reflex; Return to enclosure reflex; Go toward target reflex; and 

‘Obstacle Avoidance’ reflex.  A state diagram was developed to map the robot’s movement about the test 

area based on these pre-configured reflexes.   

Initial results suggest that the simulated environment may be useful as a tool for comparing robot navigation 

performance with respect to Obstacle Avoidance algorithms.  As one of the claims of CFS is its ability to 

learn to navigate, i.e. avoid obstacles, without being specifically equipped with a predesigned Obstacle 

Avoidance behaviour, it is hoped that the simulated environment presented here may be used to investigate 

and validate this aspect of CFS functionality.  Consequently, validation of the simulated environment is 

paramount.  Therefore, the robot’s Obstacle Avoidance performance, with and without the algorithm, needs 

to be compared to determine whether these differences are statistically significant.   

References 

[1]  G. A. J. Pounder, R. L. A. Ellis, G. Fernandez-Lopez. Cognitive Function Synthesis: Preliminary 

Results. Kybernetes 46 no. 2, (2017) 272-290. 

[2]  F. Klügl. Beyond Distributed Artificial Intelligence. KI - Künstliche Intelligenz 28 no. 3, (2014) 139-

141. 

[3]  L. Leahu, P. Sengers, M. Mateas. 2008. Interactionist AI and the promise of ubicomp, or, how to put 

your box in the world without putting the world in your box. In Proceedings of the 10th 

International Conference on Ubiquitous Computing (pp. 134-143). ACM. 

[4]  R. C. Arkin, 1998. Behavior-Based Robotics. 1998: MIT Press,. 

[5]  R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and 

Automation 2 no. 1, (1986) 14-23. 

[6]  N. J. Nilsson. 1969. A mobile automaton: an application of artificial intelligence techniques. In First 

International Joint Conference on Artificial Intelligence (pp. 509-520). 

[7]  N. J. Nilsson, 2007. The physical symbol system hypothesis: status and prospects. 2007, Springer: 

Berlin, Heidelberg. (pp. 9-17). 

[8]  D. Vernon, G. Metta, G. Sandini. 2007. A Survey Of Artificial Cognitive Systems: Implications For 

The Autonomous Development Of Mental Capabilities In Computational Agents. In Evolutionary 

Computation, IEEE Transactions On (pp. 151-180). IEEE. 

[9]  I. Arel, D. C. Rose, T. P. Karnowski. Deep machine learning-a new frontier in artificial intelligence 

research. IEEE computational intelligence magazine 5 no. 4, (2010) 13-18. 

[10]  Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature 521 no. 7553, (2015) 436. 

[11]  O. Walker, F. Vanegas, F. Gonzalez, S. Koenig. 2019. A Deep Reinforcement Learning Framework 

for UAV Navigation in Indoor Environments. In 2019 IEEE Aerospace Conference (pp. 1-14). 

IEEE. 

[12]  A. R. Hilal, K. M. Wagdy, A. M. Khamis. 2007. A Survey on Commercial Starter Kits for Building 

Real Robots. In Proceedings of the International Conference on Electrical Engineering (pp. 



             The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020) 

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020 

  

639  

[13]  M. Ruzzenente, M. Koo, K. Nielsen, L. Grespan, P. Fiorini. 2012. A review of robotics kits for tertiary 

education. In Proceedings of International Workshop Teaching Robotics Teaching with Robotics: 

Integrating Robotics in School Curriculum (pp. 153-162). 

[14]  F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. 

Floreano, A. Martinoli. 2009. The e-puck, a robot designed for education in engineering. In 

Proceedings of the 9th conference on autonomous robot systems and competitions (pp. 59-65). 

[15]  L. A. Junior, O. T. Neto, M. F. Hernandez, P. S. Martins, L. L. Roger, F. A. Guerra. A Low-Cost and 

Simple Arduino-Based Educational Robotics Kit. Journal of Selected Areas in Robotics and 

Control (JSRC) 3 no. 12, (2013) 1-7. 

[16]  E. Gyebi, M. Hanheide, G. Cielniak. 2015. Affordable mobile robotic platforms for teaching computer 

science at African universities. In Proceedings on the 6th International Conference on Robotics in 

Education (pp. 44-49). 

[17]  A. Takacs, G. Eigner, L. Kovács, I. J. Rudas, T. Haidegger. Teacher's Kit: Development, Usability, 

and Communities of Modular Robotic Kits for Classroom Education. IEEE Robotics & Automation 

Magazine 23 no. 2, (2016) 30-39. 

[18]  J. L. Krichmar, J. A. Snook. 2002. A neural approach to adaptive behavior and multi-sensor action 

selection in a mobile device. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE 

International Conference on (pp. 3864-3869). IEEE. 

 

 

 

 


