WAVE ANALYSIS OF A L-BEAM STRUCTURE WITH A BLOCKING MASS

Johnny Tiu¹* and Richard Bachoo²

¹,²Faculty of Engineering, The University of the West Indies, Trinidad
¹Email: johnny.tiu@sta.uwi.edu *(Corresponding author)
²Email: richard.bachoo@sta.uwi.edu

Abstract: The wave vibration approach regards the vibrations present within a structure as waves, whereby each wave flows along a structural member and upon meeting a discontinuity; portions of the incident wave are reflected and transmitted across the discontinuity. The reflected, transmitted and propagating wave transformations are represented mathematically by matrices, which are used to develop a set of wave relation equations at each discontinuity that can be used to describe the frequency response of the system holistically. This method creates a systematic approach of analysing structures by utilizing common cases as building blocks for a specific structure. The L-joint, described as two beams meeting at right angles; is a ubiquitous case for spatial portal and structural frames, which may become geometrically complex. Such structures are well suited to a wave vibration approach due to the large number of geometric changes and the prevalence as well as recurrence of specific cases. In this paper, the L-joint expanded to include a blocking mass, typically employed in structural systems and allows for the isolation and reflection of vibration away from contiguous structural elements. Included are; variance of transmission and reflection matrix components as the size of the blocking mass increases, numerical examples and comparison to a Finite Element Model developed in ANSYS.

Keywords: Blocking mass, L-joint, Wave vibration approach, Timoshenko beam.

https://doi.org/10.47412/EWGF2313

1. Introduction

The dynamic response of the structure is of great interest in several industries, as they may experience dynamic loading in the form of harmonic excitations from rotating machinery or random vibrations stemming from wind excitations or earthquakes. The response must be taken into consideration during the design process of any structure to determine whether the structure is appropriate for the given conditions and possible excitations otherwise the natural frequencies may be excited and the system will experience large displacements and stress and ultimately may result in catastrophic failure.

The modelling of structure can be undertaken using various methods; Finite Element Method (FEM) [39][47], Statistical Energy Analysis (SEA) [8][52] and wave propagation [29][31][32], each having their own inherent advantages and applications. These methods have varying suitability that hinges on the structure being modelled (in terms of material, dimensions and geometry) as well as the range of frequencies that are being investigated. Blocking masses have been investigated using SEA and FEM [50], and Wave analysis [14], with the former being applied to L-shaped plates and the latter to symmetric and eccentric blocking masses along a uniform wave guide.

Using the wave vibration approach, this paper models the free, in-plane, bending vibration of an L-beam structure and evaluates the suitability of this method as it applies to modelling blocking masses within the L-beam structure by comparing results of varying two parameters (blocking mass dimensions and material)
to a Finite-Element Model developed in Ansys.

2. Development of Wave Propagation Equations

The means of developing the matrices used in the wave vibration approach is heavily based off of Mace [29] and Mei’s method [31][32][33]. In particular, Mei [32] used the wave approach to model the L-beam structure with various boundary conditions. Consequently, the subsequent theoretical foundation presented in Sections 2 and 3 is based on Mei’s [32] work.

2.1 Equations of Motion

From [20] the equations of motion of a beam, ignoring damping for a bending and longitudinal vibration are:

\[
GA\kappa \left[\frac{\partial \psi(x,t)}{\partial t} - \frac{\partial^2 y(x,t)}{\partial x^2} \right] + \rho A \frac{\partial^2 y(x,t)}{\partial t^2} = q(x,t)
\]

(1a)

\[
EI \frac{\partial^2 \psi(x,t)}{\partial x^2} + GA\kappa \left[\frac{\partial y(x,t)}{\partial x} - \psi(x,t) \right] - \rho l \frac{\partial^2 \psi(x,t)}{\partial t^2} = 0
\]

(1b)

\[
\rho A \frac{\partial^2 u(x,t)}{\partial t^2} - EA \frac{\partial^2 u(x,t)}{\partial x^2} = p(x,t)
\]

(1c)

Where the material properties G, E, ρ, κ are the shear modulus and Young’s modulus, mass density and shear coefficient respectively. The geometric parameters; A, I, are the cross-sectional area and second moment of inertia respectively. Where y(x, t), u(x, t), ψ(x, t) are the deflections in the transverse, longitudinal and slope due to bending respectively each as functions of x & t, the position along the x-axis of the beam and time. q(x, t) and p(x, t) are externally applied loads in the transverse and longitudinal directions respectively. \(\frac{\partial^n}{\partial x^n} \) and \(\frac{\partial^n}{\partial t^n} \) refer to the nth derivative of a function with respect to x and t respectively.

By assuming the beam undergoes harmonic motion under no external load, the solution takes the form of:

\[
\begin{align*}
\psi &= u_0 e^{-ikx + i\omega t}, y_0 e^{-ikx + i\omega t}, \psi_0 e^{-ikx + i\omega t} \\
\end{align*}
\]

(2)

Eq. (1a) and Eq. (1b) can be represented temporally and spatially independent as:

\[
\begin{bmatrix}
GAk^2\kappa - \rho \omega^2 & -iGAk \kappa \\
-iGAk \kappa & -ELk^2 - GAk + \rho l \omega^2
\end{bmatrix}
\begin{bmatrix}
y \\
\psi
\end{bmatrix}
= 0
\]

(3)

The determinant of which gives two pairs of solutions for \(k_1 \) and \(k_2 \), the bending wavenumbers.

\[
k_1 = \pm \sqrt{\frac{\rho \omega^2 \left(\frac{1}{E} + \frac{1}{\kappa G} \right) + \sqrt{\rho \omega \sqrt{4AE\kappa^2 + i(E-G\kappa)^2}\rho \omega^2}}{2}}
\]

(4a)

And

\[
k_2 = \pm \sqrt{\frac{\rho \omega^2 \left(\frac{1}{E} + \frac{1}{\kappa G} \right) - \sqrt{\rho \omega \sqrt{4AE\kappa^2 + i(E-G\kappa)^2}\rho \omega^2}}{2}}
\]

(4b)
From Eq. (3) the amplitudes of $y(x)$ and $\psi(x)$ are coupled and can be represented in terms of each other.

$$\frac{\psi}{y} = i \frac{\rho \omega^2 - k^2 GA\kappa}{k GA\kappa}$$ \hspace{0.5cm} (5)$$

$$y(x) = a_1^+ e^{-ik_1 x} + a_2^+ e^{-ik_2 x} + a_1^- e^{ik_1 x} + a_2^- e^{ik_2 x}$$
$$\psi(x) = b_1^+ e^{-ik_1 x} + b_2^+ e^{-ik_2 x} + b_1^- e^{ik_1 x} + b_2^- e^{ik_2 x}$$ \hspace{0.5cm} (6)$$

$$\frac{b_1^+}{a_1^+} = -iP, \quad \frac{b_1^-}{a_1^-} = iP, \quad \frac{b_2^+}{a_2^+} = -N, \quad \frac{b_2^-}{a_2^-} = N$$ \hspace{0.5cm} (7)$$

$$P = k_1 \left(1 - \frac{\omega^2}{k_1^2 c_1^2}\right) \quad N = k_2 \left(1 + \frac{\omega^2}{k_2^2 c_2^2}\right)$$ \hspace{0.5cm} (8)$$

By inspection of Eq. (1c) the longitudinal vibration is uncoupled from the bending waves and thus takes the form

$$AEk^2 - A\rho \omega^2 = 0$$ \hspace{0.5cm} (9)$$

$$k_3 = \pm \frac{P}{\sqrt{E}}$$ \hspace{0.5cm} (10)$$

2.2 Reflection at Supports
The three commonly used classical boundary conditions; free, clamped and simply supported can be represented by a singular arbitrary boundary condition as depicted in Fig. 1. This general boundary condition is given by a translational spring, K_T and rotational spring, K_R.

![Figure 8: Generalised boundary condition](image)

The generalised reflection matrix can be determined by using static equilibrium in the transverse and longitudinal direction as well as the balance of moments at the point using Eqn. 11.

$$V = GA\kappa \left(\frac{\partial y}{\partial x} - \psi\right) M = EI \frac{\partial \psi}{\partial x} F = EA \frac{\partial u}{\partial x}$$ \hspace{0.5cm} (11 a-c)$$

Each specific boundary condition can then be found by applying the limit of K_T and K_R to either infinity or zero where appropriate [32].
The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020)
Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020

$$r_c = \begin{bmatrix} \frac{N+iP}{N-iP} & \frac{-2N}{N+iP} & 0 \\ \frac{2iP}{N-iP} & \frac{N+iP}{N-iP} & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$r_s = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$r_f = \begin{bmatrix} \frac{k_1k_2N + ik_1k_2P - ik_1NP - k_2NP}{k_1k_2N - ik_1k_2P + ik_1NP - k_2NP} & \frac{2k_2(k_2 - N)N}{2k_1(k1 - P)P} & 0 \\ \frac{2k_1k_2N - ik_1k_2P + ik_1NP - k_2NP}{2k_1(k1 - P)P} & \frac{-ik_2NP + k_1(-ik_2N - k_2P + NP)}{-k_2NP + k_1(k_2(N + iP) - iNP)} & 0 \\ 0 & \frac{k_2NP - k_1(k_2(N - iP) + iNP)}{1} & 1 \end{bmatrix}$$

2.3 Propagation

In the absence of any discontinuities (geometric, point supports, boundaries or excitations) as seen in Fig. 2, the wave relation between two points along the beam of length, x is given by the field transfer matrix $f(x)$ seen in Eqn. 14.

![Wave reflection and transmission](image)

\begin{align*}
b^- &= f(x)a^-; \\
&= f(x)b^+ \\
f(x) &= \begin{bmatrix} e^{-ik_1x} & 0 & 0 \\ 0 & e^{-k_2x} & 0 \\ 0 & 0 & e^{-ik_3x} \end{bmatrix} \quad (14) \end{align*}

2.4 Reflection and Transmission Across L-joint

The equilibrium conditions for the L-joint where i denotes the beam in reference, are given by [32]:

\begin{align*}
V_i &= GAk \left[\frac{\partial y_i}{\partial x_i} - \psi_i \right] \\
M_i &= EI \frac{\partial^2 y_i}{\partial x_i^2} \\
F_i &= EA \frac{\partial u_i}{\partial x_i} \quad (15) \\
\end{align*}

The continuity conditions for the L-joint are given by [32]:

\begin{align*}
u_1 &= u_j, \quad u_2 = y_j \\
y_1 &= y_j - \frac{h_2}{2} \psi_j, \quad y_2 = -u_j + \frac{h_1}{2} \psi_j \\
\psi_1 &= \psi_j, \quad \psi_2 = \psi_j \quad (16) \end{align*}
Figure 10: Reflection and transmission across a L-joint

\[b^+ = t_ja^+, \quad a^- = r_ja^+ \] \hspace{1cm} (17)

Where \(t_j \) and \(r_j \) are the transmission and reflection matrices across the joint.

In reference to beam 1:

The time independent solutions to Eq. (15) are given as:

\[
\begin{align*}
 y_1 &= a^+_1 e^{-ik_1 x_1} + a^+_2 e^{-k_2 x_1} + a^-_1 e^{ik_1 x_1} + a^-_2 e^{k_2 x_1} \\
 u_1 &= c^+ e^{-ik_3 x_1} + c^- e^{ik_3 x_1} \\
 \psi_1 &= -iPa^+_1 e^{-ik_1 x_1} - Na^+_2 e^{-k_2 x_1} + iP a^-_1 e^{ik_1 x_1} + Na^-_2 e^{k_2 x_1} \\
 y_2 &= b^+ e^{-ik_1 x_2} + b^- e^{-k_2 x_2} \\
 u_2 &= b^+ e^{-ik_3 x_2} + b^- e^{ik_3 x_2} \\
 \psi_2 &= -iPb^+ e^{-ik_1 x_2} - Nb^+ e^{-k_2 x_2} - Nb^- e^{k_2 x_2}
\end{align*}
\] \hspace{1cm} (18)

From equations Eqs. (15), (17), (18) the continuity conditions are represented by:

\[V_4 a^+ = V_2 b^+ + V_3 a^- \] \hspace{1cm} (19)

From equations Eqs. (16), (17), (18) the equilibrium conditions are represented by:

\[V_4 a^+ = V_5 b^+ + V_6 a^- \] \hspace{1cm} (20)

Where \(V_{1-6} \) represent the respective coefficient matrices for each wave component.

By using equations Eqs. (19-20) one can obtain the transmission matrix from beam 1 to 2, \(t_{j12} \) and the reflection matrix of beam 1, \(r_{j11} \).

Similarly, the transmission and reflection matrix for beam 2 can be found using the same method.
3. **Analytical Model of L-beam**

This section takes focus on a simple L-beam structure whereby two beam elements are connected by an L-joint. The system in Fig. 4 can be described using eight wave relation equations; two boundary reflection equations, two joint balance equations and four wave propagation equations.

3.1 Wave Relation Equations

![L-beam structure](image)

At boundaries A and B respectively:

\[
a^- = r_A a^+; \quad b^+ = r_B b^-
\] \hspace{1cm} (21)

Across joint, J:

\[
j_2^- = r_{122} j_2^+ + t_{122} j_1^-; \quad j_1^+ = r_{111} j_1^- + t_{121} j_2^+
\] \hspace{1cm} (22)

Along beam 1 and beam 2 respectively:

\[
j_1^- = f(x) a^-; \quad a^+ = f(x) j_1^+
\]

\[
b^- = f(x) j_2^-; \quad j_2^+ = f(x) b^+
\] \hspace{1cm} (23)

3.2 Analytical Solutions

As described by Mei [32] the analytical solutions to the natural frequencies can be found by expressing the wave relation equations as a product of the wave coefficient matrix (24 x 24), A and the wave component vector (24 x 1), Z, setting the determinant of A to zero and obtaining the characteristic polynomial. The natural frequencies of the system can be obtained by determining the roots of the characteristic polynomial, this can be easily visualised by plotting the modulus of the characteristic polynomial and determine the cross points on the x-axis. Eq. (24) gives a reduced 8 x 8 form of the wave coefficient and component equation, whereby each entry represents the respective 3 x 3 matrix. The wave component vector and the wave coefficient by extension may take any order for the respective wave components.
Alternatively, the natural frequencies can be obtained by consolidating all the wave relation equations into a single equation through substitution of each relation. This forms an expression of only one wave component, where the determinant of the coefficient matrix (3 x 3) can be calculated to obtain a similar polynomial. Similarly, the natural frequencies can be obtained from the roots of the absolute value of this polynomial. This method proves to be more computationally efficient compared the first method outlined as the size of the coefficient matrix influences the computation time of the determinant by a factor of n^3.

\[
[r_b.f.r_{j22}.f + r_b.f.t_{j12}.f.[I - r_a.f.r_{j11}.f]^{-1}.r_a.f.t_{j12}.f - I].b^+ = 0
\]

(25)

Eq. (25) shows an example of the alternative solution for the polynomial, which is given by the absolute value for the determinant of the coefficient matrix to b^+. It should be noted that the solution need not be in terms of b^+ and can take the form of any of the eight wave components.

3.3 Numerical Example

As an example; using the system described in section 3.1 and the following material properties: Young’s modulus, $E = 200$ GPa, shear modulus, $G = 76.9$ GPa, Poisson’s ratio, $\nu = 0.3$, mass density, $\rho = 7900$ kg/m3, shear coefficient, $\kappa = 10 * (1 + \nu)/(12 + 11\nu)$. The physical dimensions for the structure: beam thickness, $b = 25$ mm, beam width, $w = 25$ mm, beam 1 & 2 length, $x = 1$ m and the boundary conditions for A and B are clamped.

The characteristic polynomial plot as obtained from Eq. (24) is shown in Fig. 5 and the natural frequencies are obtained numerically by calculating the local minima at the respective cross points on the x-axis.

<table>
<thead>
<tr>
<th>Mode Number</th>
<th>Natural Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87.741</td>
</tr>
<tr>
<td>2</td>
<td>128.58</td>
</tr>
<tr>
<td>3</td>
<td>282.48</td>
</tr>
<tr>
<td>4</td>
<td>349.16</td>
</tr>
<tr>
<td>5</td>
<td>576.5</td>
</tr>
<tr>
<td>6</td>
<td>627.47</td>
</tr>
<tr>
<td>7</td>
<td>688.97</td>
</tr>
<tr>
<td>8</td>
<td>730.31</td>
</tr>
</tbody>
</table>
4. Variation of Joint parameters and Comparison to Finite Element Model

The Finite Element Model is created using Ansys Mechanical APDL, modelling the entire structure using solid elements, utilizing the material properties, dimensions and boundary conditions outlined in 3.3. The blocking mass will be represented as a solid cuboidal element with an initial width as 25mm,

Table 2: Variation of natural frequencies due to scaling factor, α

<table>
<thead>
<tr>
<th>Mode number</th>
<th>$\alpha=1$</th>
<th>$\alpha=2$</th>
<th>$\alpha=3$</th>
<th>$\alpha=4$</th>
<th>$\alpha=5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wave</td>
<td>Ansys</td>
<td>Wave</td>
<td>Ansys</td>
<td>Wave</td>
</tr>
<tr>
<td>1</td>
<td>87.741</td>
<td>87.066</td>
<td>86.499</td>
<td>84.921</td>
<td>84.638</td>
</tr>
<tr>
<td>2</td>
<td>128.58</td>
<td>126.99</td>
<td>126.15</td>
<td>127.64</td>
<td>122.5</td>
</tr>
<tr>
<td>3</td>
<td>282.48</td>
<td>280.49</td>
<td>272.47</td>
<td>273.38</td>
<td>238.78</td>
</tr>
</tbody>
</table>

Figure 12: Characteristic polynomial

Figure 13: L-Beam structure with blocking mass

4.1 Manipulation of Joint Dimensions

For the purpose of simplicity, the dimensions of the joint will be scaled horizontally and vertically by a scaling factor, α, ranging from 1-5 times the initial dimensions shown by Fig. 6.
From Table 2, the wave model holds under two conditions; for lower frequencies and for a low scaling factor, α (and subsequently the size of the blocking mass), due to the joint being modelled as a perfectly rigid member.

Figure 7 gives insight into how the wave components for both reflection and transmission matrices across the joint transition and convert as the blocking mass size increases. The bending-longitudinal & and longitudinal-bending wave components are dominated by a large transmission factor across the joint (large portion of the energy incident to the joint from beam 1 is then transferred to beam 2), except for the longitudinal onto longitudinal which is totally reflected (energy incident from beam 1 is reflected back onto beam 1).

Figure 14: Parametric surface plots for elements of joint reflection (orange) and transmission (blue) matrices from 0 – 1000Hz
Figure 15: Transition frequency for wave component conversion of the y and u directions from 0 - 1000 Hz

The wave components for the y and u direction, when converting to one another exhibit a transition frequency where the transmission (blue surface) supersedes the magnitude of the reflection components (orange surface), this transition frequency increases as the scaling factor, α also increases as seen in Fig. 8. Initially, for relatively low frequencies; a majority of the wave incident to beam 1 is reflected onto itself and as it approaches the transition frequency the reflected energy decreases, and the transmitted energy begins to increase beyond the magnitude of the respective reflection wave component.

Figure 16: Secondary transition frequency shift from 0-20000 Hz

Additionally, at higher frequencies there exists a secondary transition frequency dependent on α shown in Fig. 9 for the bending wave components in both the reflection and transmission matrices, r_j and t_j. After this juncture the dominant wave component in terms of magnitude switches from the t_j to r_j, described by Cremer, Heckl and Petersson [14] as the total reflection effect where the transmission factor vanishes completely leaving only the reflected portion, thus acting as a low pass filter.

4.2 Manipulation of Joint Material

The change of material will affect the mass of the joint and in turn the relative stiffness of the joint, increasing. Table 2 lists the natural frequency of the system described in 3.1 where the material of the joint is varied using physical properties for: Steel, Aluminium, Brass and Cast Iron, obtained from [26].
Table 3: Variation of Natural frequencies due to change of joint material

<table>
<thead>
<tr>
<th>Mode number</th>
<th>Natural Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminium</td>
</tr>
<tr>
<td></td>
<td>Wave</td>
</tr>
<tr>
<td>1</td>
<td>87.741</td>
</tr>
<tr>
<td>2</td>
<td>128.58</td>
</tr>
<tr>
<td>3</td>
<td>283.15</td>
</tr>
<tr>
<td>4</td>
<td>352.83</td>
</tr>
<tr>
<td>5</td>
<td>587.15</td>
</tr>
</tbody>
</table>

For the Wave and Ansys model, both showed little variation of the natural frequencies as the material was changed due to the relative size of the joint and thereby its mass, thus having relatively low weighting for determining the natural frequency. As with the results of manipulating the joint dimensions, the wave model only holds for lower frequencies and shows fair agreement across all materials chosen as shown in Table 3. Here the material of the joint was altered for each experiment, from a low density (aluminium) to a high density (brass), increasing the mass of the joint. For the wave model, as the mass of the joint increases the natural frequencies for each respective mode decreases. However, there becomes a disparity between the results of the wave and Ansys model for each of the materials as the mode number increases. This again can be attributed to the rigidness of the joint in the wave model, as it only includes the mass and the physical dimensions of the joint, thus the flexibility is not represented.

5. Conclusion

Using the wave vibration approach; the wave relations, reflection, transmission and propagation matrices and two methods of assembling and subsequently solving an L-beam structure were outlined in this paper. Fair agreement of in-plane natural frequencies between the wave and finite element model for the L-beam structure was achieved, however as the scaling factor, α increased, the agreement was not upheld. This shows that the wave model is limited to slender members as the flexibility cannot be appropriately represented as the model stands. From the surface plots of the reflection and transmission matrices, it is easily recognisable that by increasing the size of blocking mass the structure can be tuned to reflect higher frequencies and isolate vibration to a specific local of the structure.
References

