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Abstract: Design complexity in additive manufacturing (AM) is a current issue in the 

research community, fueled by the well-known phrase “complexity for free”. This 

statement has promoted the assumption that complex geometries may be achieved without 

any increase in the cost of production. However, recent research has indicated that 

increasing shape complexity produces an increase in production costs for the material 

extrusion process. This challenges the mainstream assumption that AM technologies 

provide ‘complexity for free’. The AM community requires further investigation of design 

complexity and its impact on sustainable production when used as a Design for 

Manufacturing (DfM) tool. This paper proposes a data-driven method which uses design 

complexity as an AM performance indicator for the material extrusion process. The 

manufacturing responses included build time (BT), dimensional accuracy (DA) and 

complexity index (CI). Design space exploration of an automotive air filter model was 

achieved by varying five critical design features which impact complexity. The study 

utilized a Face Centered Central Composite Design (FCCCD) of three levels for the design 

features, comprising 32 experimental models. The optimal model was manufactured based 

on multi-objective optimization using the MINITAB© response optimizer. This method 

exploits the design features to achieve target performance and manufacturability. The 

viability of design complexity as an AM performance indicator was discussed leading to 

three major improvements to the Product Design and Development (PDD) process for AM. 

The proposed improvements have the potential to reduce process times and minimize 

resources, providing a sustainable AM approach for developing regions.  
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1. Introduction 

AM technology has been purported as a revolutionary achievement for design and manufacturing. Despite 

the numerous advantages of AM, researchers are recently acknowledging that the AM process has unique 

challenges. The three major challenges facing AM users are shape optimization, design for 3D printing and 

pre and post-processing [1]. Poor utilization of the available design space creates issues for the 

manufacturing process including material and energy wastage which do not contribute to sustainable AM. 

Another factor which lends to the perception by end-users of the technology that these limitations are well 

controlled, is the use of the catchphrase “complexity for free” expressed in a largely popular and influential 
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book where the authors proposed that complex geometries could be exploited in AM without additional 

increase in time and cost [2]. The lack of sustainable design strategies paired with the minimization of 

design as an issue puts additional pressure on machine setup, such as the reduction of layer thickness or 

increase in deposition speed, to correct the inadequacies of the design.  

Thus, design strategies which improve the AM process have a growing interest to manufacturers with strict 

resource limits. The issue of incorporating intricate geometries in AM design has been an ongoing 

discussion, a significant theoretical explanation was proposed by [3]. The author indicates that perimeter 

travel distance paired with design volume is a significant factor of excessive manufacturing time in AM. 

This theoretical discussion was transformed into experimental work following these arguments, which 

attempted to determine the implications of complex geometry in AM. One study provided a generous 

assessment of the effects of complexity with respect to 3D sand printing which had yet to be achieved for 

the material extrusion process using an optimization approach [4]. Following this, an AM case study 

focusing on the material extrusion process proposed a method to quantify the complexity of material 

extrusion processed parts [5]. The method utilized design data based on a Shape Complexity Index, a ratio 

of part surface area to the bounding box volume. The study conducted an experiment on a load cell holder 

with five variations of shape complexity and examined the impact on part cost.  

 

Thus far, the experimental work has only achieved to conclude that design complexity in AM is a cost 

component that requires more detailed investigation. This study proposes that this gap can be filled by a 

thorough statistical design space exploration of a component and furthermore describes its implications to 

the AM PDD process. Design space exploration has been described as a data-driven design method defined 

as the search of potential solutions which meet design targets within a specified range [6]. The study 

concluded that a multidisciplinary data-driven optimization method was able to effectively design 

simultaneously for product performance, material and manufacturing process. Data-driven methods provide 

rapid search of potentially optimal designs through design exploration and exploitation [6]. Therefore, 

through the combination of a data-driven design method such as multi-objective optimization paired with 

the previously employed complexity index, an optimal design solution for target manufacturability may be 

attained.   

 

2. Method 

The methodology explores the statistical relationships between design features and the responses of design 

complexity, build time and dimensional accuracy. The design data is gathered through design space 

exploration using experimental models. The optimal design which achieved target performance and 

manufacturability was determined through design exploitation in the form of data-driven optimization. The 

initial geometry of the component being optimized is a simplified version of an automotive air filter frame, 

shown in Fig. 1. The indicated design features are described in Table 1.  
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Figure 1: Design features of air filter model. 

The shape consists of two functional surfaces at either side which contact with the filter housing, with the 

available design space between the functional surfaces. Recent studies have utilized this concept of 

functional surfaces as limits for the enclosed design volume (DV) [5,7]. This study identified five design 

features in accordance with the design attributes of the part. These design features include; wall thickness 

(WT), internal fillet (IF), external fillet (EF), number of ribs (NR) and rib height (RH). For each experiment, 

the Surface Area (SA) and Design Volume (DV) were used to calculate the Complexity Index (CI) as shown 

in Eq. (1). The complexity index served as the primary objective function.  

 

 
𝐶𝐼 =  

𝑆𝐴

𝐷𝑉
 

 (1) 

Dimensional accuracy (DA), as proposed in this study, utilized the method of direct observation of a single 

axis using a statistical form demonstrated by for the relative deviation in dimension [8], as shown in Eq. (2).  

 
∆𝑍 = |

𝑍𝐴𝐶𝑇𝑈𝐴𝐿 − 𝑍𝐶𝐴𝐷
𝑍𝐶𝐴𝐷

| 
  (2) 

ZACTUAL represents measured value of dimension, ZCAD represents the respective CAD model value, ΔZ 

represents relative deviation in Z. Built time (BT) was measured from the actual time from the initial 

extrusion to the completion of the model. A Face Centred Central Composite Design (FCCCD) was used 

to generate the experimental models. FCCCD is a fractional factorial 2K design, which comprises of K 

factors at coded levels of +1, -1 and 0 for the uncoded maximum, minimum and centre values of each factor 

respectively as shown in Table 1.  

Table 1: Design feature levels for FCCCD. 

Factor 

(Design Feature) 

Symbol Unit Low Level 

(-1) 

Centre 

point (0) 

High Level 

(+1) 

Wall thickness (WT) X1 mm 1.5 3.25 5 

Number of Ribs (NR) X2 count 2 3 4 

External fillet (EF) X3 mm 0 1.5 3 

Internal fillet (IF) X4 mm 0 1.5 3 

Rib height (RH) X5 mm 3 5 7 
 

For this study, a Raise3D® N2 Plus printer using 1.75mm filament was utilized, the build envelope for this 

printer is 12”x12”x24”. A total of 32 experiments were modeled in the Solidworks® 2016 package, sliced 

using the ideaMaker® software and printed using the material extrusion process parameters shown in 

Table 2.  

Table 1: Material extrusion process parameters. 

No. Process Parameter Value 

1 Bed Temperature 110ᵒC 

2 Extruder Nozzle 225ᵒC 

3 Infill Percentage 10% 

4 Layer Height 0.15mm 

5 Infill Speed 60mm/s 

6 Shells 2 

7 First Layer Speed 15mm/s 

8 First Layer Height 0.3mm 
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9 Infill Pattern Grid 

10 Brim 8 lines 

3. Results 

3.1 Design Exploration 

For this study, design exploration is achieved through ANOVA of the raw design data. This analysis was 

used to produce regression models and main effects plots from which inferences about the optimal design 

features for the air filter could be derived. The regression models obtained for CI, BT and DA shown Eq. 3 

to Eq. 5 were deemed satisfactory for further statistical analysis and optimization. The regression models 

include design feature interactions through linear, quadratic and second-order polynomial terms.  

 
CI = 0.170442 + 0.013705 X1 + 0.005117 X2 - 0.000195 X3 - 0.000053 X4 - 0.000499 X5 

- 0.000579 X1*X1 - 0.000062 X3*X3 + 0.000186 X4*X4 + 0.000869 X1*X2 - 0.000071 X1*X3 

- 0.000435 X1*X5 - 0.000124 X2*X4 + 0.002097 X2*X5 - 0.000338 X3*X4 - 0.000124 X4*X5 

 

 (3) 

BT = 21.86 + 18.43 X1 + 0.93 X2 + 2.973 X3 + 1.974 X4 - 4.02 X5 - 1.739 X1*X1 - 0.541 X2*X2 

+ 0.130 X3*X3 + 0.011 X4*X4 + 0.215 X5*X5 + 0.170 X1*X2 - 0.2591 X1*X3 - 0.6607 X1*X4  

- 0.1122 X1*X5 - 0.208 X2*X3 + 0.342 X2*X4 + 1.2110 X2*X5 - 0.6116 X3*X4 

- 0.1879 X3*X5+ 0.1219 X4*X5 

 

 (4) 

DA = 0.00627 - 0.00078 X1 - 0.00487 X2 + 0.00622 X3 - 0.00458 X4 + 0.00248 X5 

+ 0.000304 X1*X1 + 0.000598 X2*X2 - 0.000919 X3*X3 + 0.001162 X4*X4 - 0.000267 X5*X5 

- 0.000001 X1*X2 - 0.000507 X1*X3 + 0.000063 X1*X4 - 0.000072 X1*X5 + 0.000054 X2*X3 

+ 0.000168 X2*X4 + 0.000168 X2*X5 - 0.000112 X3*X4 - 0.000278 X3*X5 + 0.000056 X4*X5 

 (5) 

 

 

Figure 2: Main effects plot for CI. 

The Main effects plot for CI shown in Fig. 2, provided a preliminary assessment on the influence of the 

independent design features on CI. It was observed that X1 and X2 were the largest contributors to increase 
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in CI, with a linear increase being observed for both factors. Design feature X5 showed similar increase 

while X3 and X4 produced a marginal decreasing effect when varied from minimum to maximum. The 

Main effects plot for EBT shown in Fig. 3 suggests that X1 and X2 are the largest contributors to increase 

in EBT. Design feature X1 was found to produce the largest increase followed by X2 while X3, X4 and X5 

indicate that unwanted conditions exist in the central region of those design feature levels.  

 

Figure 3: Main effects plot for BT. 

The Main effects plot for DA is shown in Figure 4 suggests that all design features influence dimensional 

accuracy in the z-axis differently.  Design features X3 and X4 produce the largest overall effect, with the 

latter producing the highest deviation of 0.0063. However, X1 is the largest contributor to increase in 

deviation with an observed increase of 0.0013 for a single increase in X1 from 3.25mm to 5mm. The 

preliminary statistical analysis reveals multiple options for response optimization. However, to encompass 

the interactions indicated in the regression models and improve sensitivity, response optimization is 

independent of the inferences made of the main effects. 
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Figure 4: Main effects plot for DA. 

3.2 Design Exploitation and Optimization 

 

Figure 5: Response Optimizer results. 

The MINITAB® 17 Response Optimizer results, shown in Fig. 5, further validated the observed effects 

during the design exploration. The optimized design feature levels are necessary to exploit the design to 

reach target design values. In this study, the highest manufacturability is required, represented by setting 

the response optimizer parameters to obtain maximum CI, minimal BT and minimal DA.  The composite 

desirability plots show that minimum (-1) levels of X1 and X3 were the most desirable for all responses, 

while the maximum (+1) levels for X2 and X5 were the most desirable. The optimization results shown in 

the plot indicate that the preferred design feature configuration is 1.5mm, 0mm, 0.9mm and 7mm for X1, 



             The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020) 

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020 

 

736 

X3, X4 and X5 respectively with an X2 of approximately 4. The highest complexity for the best 

manufacturing performance for the air filter model was reached at a CI of 0.263, which corresponds to a 

BT of 59.19 minutes and a DA of 0.002. When compared to a non-optimal model of the same model mass 

with no additional support material, the MINTAB® response optimized model showed a 10% reduction in 

BT from 66.73 for a non-optimized model with equal mass of 6.1g.  

4. Discussion and Findings 

4.1 Design Optimization  

The study proposed to develop a data-driven method which adequately determines the optimal CI or 

complexity limit for the case of an automotive air filter model. Design exploration of the individual design 

features of the air filter model was achieved through statistical analysis and main effects plots. The 

combination of individual design features was exploited to produce maximum manufacturability for 

maximum complexity. This method can facilitate the creation and management of realistic design target 

values for performance and manufacturability simultaneously by balancing multiple criteria.  

As three manufacturing criteria were investigated in this study, a multi-objective optimization technique 

was used. The MINITAB 17 response optimizer was capable of producing a model which is fabricated 10% 

faster with increased accuracy as compared to non-optimal design of identical mass. The reduction is 

marginal for a single air filter model, however, for continuous production it can significantly increase 

production output and cost savings. The findings suggest that manufacturing requirements can be 

effectively controlled for AM using CI.  

4.2 AM Process Improvement 

Design management was proposed as the realization of the design process through organizational and 

management activities [9], with the goal of producing low cost products with high manufacturability and 

quality. The results suggest that the proposed data-driven method utilizing design complexity can enhance 

the traditional PDD process shown in Fig. 6. This is achieved by bridging the gap between design features 

of the CAD phase and AM performance responses. With the addition of mathematical models of the design 

features to the CAD phase, feedback loops of the responses for AM performance using EBT and Quality 

Control using DA were made. The designer may exploit specific design feature configurations utilizing CI 

to improve the AM responses. This is summarized by three major enhancements made to the traditional 

PDD process for AM as shown in Fig. 7. 

1) DA data was used to increase the accuracy of the model in the chosen axis through optimization. 

The feedback from QC allows the mathematical model for DA to be continuously improved by 

comparing theoretical and actual responses.  

 

2) The feedback of BT from AM production can allow design feature adjustments to be made to 

correct production issues such as production over time or idle time, one of the six categories of 

production loss that impact overall equipment effectiveness (OEE). 

 

3) AM response optimization in the CAD phase is also fundamentally connected to AM process 

planning, as process planning typically involves identification of the production constraints. A 

maximum allowable BT, derived from the desired production volume, will influence the optimal 

values for CI and BT. The decreased reliance on RP parameter configuration, to obtain faster or 

slower production depending on the desired responses, also reduces machine setup and adjustment 

times. This can enhance OEE when producing in batches or allow for faster changeovers when 

using flexible manufacturing.   
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Figure 6: Typical educational PDD process for AM. 

 

Figure 7: Design optimization enhanced PDD process for AM. 

5. Conclusion 

The initial challenge addressed in this study is design space exploration and exploitation using design 

complexity, while attempting to achieve target performance and manufacturability. Design complexity in 

AM was found to be a useful metric for assessing the manufacturing performance of a part. The findings 

suggest that design complexity, when monitored in conjunction with other manufacturing responses, may 

be used to enhance the PDD process for AM. Design exploration using a data-driven method incorporating 

design complexity was found to be an effective method for achieving this. The Complexity Index, CI was 

found to adequately represent the variation of complex design features of the automotive air filter model. 

The results indicate that all three investigated responses CI, BT and DA were optimized using the developed 

method. Further design exploitation through multi-objective optimization was performed by which BT for 

the air filter model was significantly reduced by 10% and DA increased for identical material usage.  The 
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proposed method successfully improves upon that proposed by [5] as it defines the variables of the AM 

component and fully quantifies the impact of each design feature and their interactions.  

The identification of critical design features in this study, though based on literature, may be described 

methodically and subsequently improved. Thus, further work is needed to expand this methodology to other 

AM components and provide a framework for identifying and managing critical design features. As this 

study is fundamentally connected to a fixed design space volume, some maximum and minimum limits for 

design features can be obtained quantitatively.  However, some design feature limits are based on designer 

discretion. Thus, distinguishing between these design features is another direction for future work.  
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