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Abstract: Advances in materials and manufacturing technology and increased 

competitiveness has led to companies needing to manufacture products more efficiently 

and rapidly to meet growing market demands. The Additive Manufacturing (AM) process 

is ideally suited to the fabrication of complex geometries usually impossible with 

traditional methods furthermore it is capable of fabricating entire assemblies in step 

without the need for tooling or human involvement.  

Due to the flexibility and advantages over conventional methods AM has garnered 

significant attention from the manufacturing sector in meeting market demands. Of the 

array of available AM processes, Material Extrusion (ME) utilizes a heated thermoplastic 

filament to construct parts or assemblies via a layer by layer deposition method.  This 

process is not without its own flaws, suffering from accuracy, build time, strength etc., due 

to the conflicting nature of the process parameters of ME. Therefore, it is critical to 

understand the shortfalls of ME and classify the factors that directly influence the 

performance of a part. 

This paper focuses on the enhancement of the performance measures of the part in terms 

of build time, material consumption and max torsional stress. This is accomplished by 

understanding the influence of the process parameters such as raster width, raster angle, 

part orientation and layer thickness on the performance measures via statistically valid 

models and optimization methods. This was accomplished using a Box-Behnken design 

for the experimental design followed by the multi-objective optimization of the empirical 

models from which the optimum process settings was determined. 

This study has shown that complex a non-linear relationship exists between the process 

parameters and performance measures. Results show that the Artificial Neural Network 

had a better fit when compared to the Response Surface Methodology model and it can be 

a promising alternative for the prediction and optimization of the ME process. 
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1. Introduction 

At present the manufacturing industry is under increased pressure due to rising global competition and rapid 

developments in manufacturing technologies, companies have been put under added pressure to 

manufacture products and deliver them to fulfil the demands of an ever-evolving market [1][5]. Additive 

Manufacturing (AM) since its inception has aided companies in accomplishing this goal, with the 
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progressive migration from a technique specializing in prototyping to a production capable technology. 

This has been realized through significant advancements in key areas such as process and materials [2]. 

Understanding the shortcomings of the AM process is key to its introduction to the industrial and 

commercial markets as to avoid failures endangering the lives of end users. Also, standardization of parts 

manufactured by AM techniques needs to be evaluated, as the same part fabricated with different process 

parameters can display variations in mechanical properties. The reduction of build time and material 

consumption while maintaining the mechanical integrity is of high importance of most industrial 

applications. These measures affect the manufacturing cost and functionality of the manufactured part. 

Mohamed, Masood, and Bhowmik (2016b) stated that “The material consumption and deposition rate were 

the major factors in the reduction of build time, and that the deposition rate was dependent upon build 

parameters such as layer thickness and road width” [3]. It can be said that build time, material consumption 

and mechanical performance are intrinsically linked to one another. Hence this study looks at finding the 

optimal build parameters that will improve the max torsional stress while reducing material consumption 

and build time. 

The models generated from this experimentation can assist in comprehending the complex interactions 

between process parameters and performance measures. Understanding and determining machine 

parameters based upon the intended end use is key to ensuring proper operational use during its lifetime 

[4]. Through this, manufacturers can avoid over designing parts and tools thus reducing material wastage 

and manufacturing time, both of these factors are in turn key cost drivers. 

In this paper a systematic methodology is applied in identifying and evaluating key process parameters 

impacting the performance measures. This methodology employs sampling technique referred to as 

Response Surface Methodology (RSM) with mathematical modelling and soft-computing methods in 

solving these multiple objective criterion problems. 

The paper is organized as follows: Section 2 briefly discusses the previous research done in the area of 

Additive Manufacturing; Section 3 presents the experimental process utilized. Section 4 is reserved for the 

modelling and optimization of the predictive models; in Section 5 the results are briefly discussed. Finally, 

in Section 6 concludes with recommendations for future work. 

2. Additive Manufacturing 

A critical review of literature spanning a period of two decades has shown that the properties of Additive 

Manufacturing (AM) parts are intrinsically linked to the various process-related parameters [5], from this 

review it was seen that the strength of Material Extrusion (ME) parts were dependent upon these five 

controllable factors; raster angle, air-gap, raster width, part orientation and layer thickness [6]. 

A study performed by Lee et al. (2007) shows that a compressive specimen has approximately 11.6% higher 

strength when the axis of compression is parallel to the build plane, complimentary to this was research 

from Durgun and Ertan (2014) who reported that build orientation has a greater effect than raster angle on 

the mechanical strength of ME parts [7][8]. Ziemian, Sharma, and Ziemian (2012) experimentation showed 

that as the raster angle increased the flexural and impact strength of parts decreased while parts with a raster 

angle of 0° exhibited the highest yield strength [9]. Similar to this, Afrose et al. (2016) research showed 

that samples built 0° exhibited the highest tensile strength compared to those of 45° and 90° [10]. 

While the reduction of the air gap will lead to more dense components with higher strength fabricated, [11]. 

This attributed to a reduction in void formation due to low airgap values which increases the bonds between 

rasters leading to increased structural strength [12]. Raster width was shown to increase the impact and 

creep resistance of parts, this is a result of thicker rasters reducing the formation of voids in the sub-
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perimeter region directly reducing porosity [3][5]. Thicker rasters have been attributed to the reduction in 

build time as less time is needed to infill a single interior layer. 

The stair stepping effect is a result of layer thickness, generally with a reduction in layer thickness this 

effect is reduced however at the expense of increased build times. Researchers [5][14][15] have 

acknowledged the significant impact of layer thickness through experimentation and concluded that the 

best surface finish and dimensional accuracy was achieved with a minimum layer thickness. 

3. Experimental plan 

Material Extrusion (ME) is one of the Rapid Prototyping (RP) process which can produce functional parts 

with complex geometries, unlike other RP process however which employ the use of lasers, powers and 

resins, this utilizes a thermoplastic in the form of filament. Computer controlled nozzles selectively deposit 

semi-molten filament onto a heated bed, with the nozzles following the contours of the part generated from 

the 2.5D sections. After each layer is built the heated bed is lowered by the height of one layer continuing 

this until the part is completed, bonding of these individual layers is achieved through the process of 

diffusion welding. 

Based on past studies, factors were selected with each respective level considered. These factors are defined 

as follows: 

1. Raster Angle- the direction of the raster relative to the build plate. 

2. Raster Width- the width of the rasters used to fill the interior regions of the specimen. 

3. Part Orientation- the inclination of the specimen with respect to the X, Y, Z axis. 

4. Layer thickness- the thickness of each layer deposited by the nozzle to complete the specimen. 

 

Table 14: Parameter Levels Used for DOE 

Build Parameters Level 1 Level 2 Level 3 

Raster Angle (degrees) 0 45 90 

Raster Width 0.2 0.3 0.4 

Part Orientation (degrees) 0 5 10 

Layer Thickness 0.1 0.2 0.3 

 

Other process factors are kept at a fixed level in order to maintain a continuity during experimentation. The 

levels selected for each factor is based upon the permissible minimum and maximum settings recommended 

by the equipment manufacturer and past experiences. In order to understand the relationship between the 

process parameters and the performance measures selected, a Design of Experiments (DOE) methodology 

was employed. Experiments were conducted based on a Response Surface Methodology (RSM) technique, 

which allows the fitting of second order polynomial models as seen in Eq. (1) which is preferable if 

curvature is suspected to present in the system.  

𝒚 =  𝜷𝟎 + ∑𝜷𝒊𝒙𝒊 + 

𝒌

𝒊=𝟏

∑𝜷𝒊𝒊𝒙𝒊
𝟐 + ∑ 𝜷𝒊𝒋𝒙𝒊𝒙𝒋 + 𝜺 

𝒌

𝟏≤𝒊≤𝒋

𝒌

𝒊=𝟏

 (1) 

The Box-Behnken from RSM was selected over the Central Composite Design (CCD) as it tends to be less 

expensive to complete and at no time it produces a run where all factors are set to their extremes, such as 

all of the highest/lowest settings [16][17]. To develop the Box-Behnken experimental design the number 

of runs is defined as seen in Eq. (2),  with 𝑘 defined as the factor number and 𝐶0 the replicate number of 
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the central point (Hashemi et al. 2019, 2). The final un-coded DOE design as a result of this is seen in 

Table 2. 

                                                                𝑵 =  𝟐𝒌(𝒌 − 𝟏) + 𝑪𝟎 (2) 

 

Table 2: Box-Behnken Experimental Design 

Experiment Raster Angle Raster Width 
Part 

Orientation 

Layer 

Thickness 

1 0 0.3 5 0.3 

2 45 0.3 0 0.3 

3 45 0.4 5 0.3 

4 45 0.4 5 0.1 

5 45 0.4 0 0.2 

6 90 0.3 10 0.2 

7 45 0.2 10 0.2 

8 45 0.3 10 0.3 

9 45 0.4 10 0.2 

10 0 0.3 5 0.1 

11 0 0.2 5 0.2 

12 90 0.2 5 0.2 

13 45 0.3 10 0.1 

14 45 0.3 5 0.2 

15 45 0.3 5 0.2 

16 45 0.3 0 0.1 

17 45 0.3 5 0.2 

18 0 0.3 0 0.2 

19 90 0.3 5 0.3 

20 90 0.3 5 0.1 

21 45 0.2 0 0.2 

22 90 0.3 0 0.2 

23 0 0.4 5 0.2 

24 45 0.2 5 0.3 

25 45 0.2 5 0.1 

26 90 0.4 5 0.2 

27 0 0.3 10 0.2 

 

Utilizing the experimental design of Table 2 each specimen is fabricated using Raise3D N2 Plus for the 

respective material consumption, time to manufacture and max torsional stress measurements. The material 

used for test specimen fabrication is acrylonitrile butadiene styrene (ABS), belonging to the styrene 

ter-polymer chemical family, it is a hard, tough, heat resistant engineering thermoplastic which is widely 

incorporated in the automotive sector, housing appliances, luggage and pipe fittings. By dissolving 

butadiene-styrene copolymer in a mixture of acrylonitrile and styrene monomers, polymerization of the 

monomers is achieved through the introduction of free-radical initiators [19]. Essentially the three 

constituents impart a good balance of material properties such as, good impact strength, good heat resistance 

and rigidity. 
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Torsional stress is determined using a SM21 Torsion Testing Machine, the estimated build time and 

material consumption was taken from ideaMaker 3.3.0 after slicing the part file and compared to the actual 

recorded values to determine the error percentage. 

4. Modelling and Optimization 

4.1 Response Surface Methodology 

Analysis of the experimental data obtained from the Box-Behnken design runs is done on Minitab18 

software using the full quadratic response model given in Eq. (1). However, before this analysis was done, 

an initial analysis was done on the data set and it was found that the Max. Stress of experiment 24 was 

deemed to be an outlier, and the decision was made to remove it, as it skewed the data set when included. 

The Analysis of Variance (ANOVA) for the second-order regression model is then calculated.  

After the initial equations were developed for each model, they were iteratively optimized to allow for the 

best possible 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
2  values,  this was used as a measure of the models fit because it determines how 

well the model predicts a response for new observations/inputs. To achieve this the results from each t-test 

was examined and the P-values of each term was compared to the significance level. An α=0.05 was 

utilized, indicating there is a 5% risk of concluding that a relationship exists between terms and the 

response; 

• If P≤ α then the relationship is significant and the user can conclude that there is a statistical 

significance between the response and the term. 

• If P≥ α then the relationship is not statistically significant, the next step would be to remove one 

term at a time each time refitting the modelling and examining the P-values and the  
𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
2  values. There are instances in the iterative process where removing insignificant terms 

can reduce the R2 so care should be taken here. 

The 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
2  values after the iterative process for equations (3) - (5) are given as 97.02% (build time), 

96.52% (material consumption) and 76.88% (max torsional stress) respectively. The factors for the 

equations are listed as follows: 

• 𝑥1- Raster angle 

• 𝑥2-Raster width  

• 𝑥3- Part orientation 

• 𝑥4- Layer thickness 

 

 𝒀𝟏 = 𝟓𝟔𝟎. 𝟏 − 𝟎. 𝟐𝟐𝟏𝒙𝟏 − 𝟏𝟏𝟓𝟕𝒙𝟐 + 𝟏𝟎. 𝟓𝟑𝒙𝟑 − 𝟐𝟐𝟏𝟔𝒙𝟒 − 𝟎. 𝟎𝟎𝟏𝟕𝟔𝒙𝟏
𝟐  +  𝟗𝟖𝟏𝒙𝟐

𝟐  +

 𝟐𝟗𝟗𝟑𝒙𝟒
𝟐  +  𝟏. 𝟎𝟓𝟔𝒙𝟏𝒙𝟒  − 𝟕𝒙𝟐𝒙𝟑 + 𝟏𝟔𝟓𝟎𝒙𝟐𝒙𝟒 − 𝟐𝟑𝒙𝟑𝒙𝟒                                                                

(3) 

 

 𝒀𝟐 = 𝟏𝟎. 𝟓𝟎𝟑 − 𝟎. 𝟎𝟎𝟔𝟒𝟖𝒙𝟏 − 𝟕. 𝟐𝟗𝒙𝟐 + 𝟎. 𝟑𝟒𝟏𝟕𝒙𝟑 − 𝟏𝟐. 𝟓𝟎𝒙𝟒 +  𝟏𝟏. 𝟒𝟔𝒙𝟐
𝟐 + 𝟏𝟏. 𝟒𝟔𝒙𝟒

𝟐 +
𝟎. 𝟎𝟎𝟏𝟏𝟏𝟏𝒙𝟏𝒙𝟑 + 𝟐𝟓𝒙𝟐𝒙𝟒                                                                

(4) 

 

𝒀𝟑 = −𝟏𝟑. 𝟗 + 𝟎. 𝟓𝟕𝟑𝒙𝟏 + 𝟗𝟎𝒙𝟐 + 𝟕. 𝟒𝟑𝒙𝟑 + 𝟑𝟔𝟖𝒙𝟒 − 𝟎. 𝟎𝟎𝟖𝟖𝟔𝒙𝟏
𝟐 + 𝟏𝟎𝟐𝟓𝒙𝟐

𝟐 −
𝟎. 𝟎𝟐𝟔𝟕𝒙𝟏𝒙𝟑 − 𝟐𝟔. 𝟏𝟑𝒙𝟐𝒙𝟑 − 𝟏𝟕𝟕𝟒𝒙𝟐𝒙𝟒 + 𝟏𝟖. 𝟑𝟏𝒙𝟑𝒙𝟒                                                                 

(5) 
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4.2 Artificial Neural Network (ANN) 

The capability for ANNs to reproduce non-linear functions allows for the possibility of accounting for 

complex interactions between input and output factors which are not easily modelled (Di Angelo and Di 

Stefano 2011, 220). The ME process involves a large quantity of factors that interact with one another 

forming a complex relationship between them, it is often difficult to accurately predict certain output 

characteristics by conventional methods such as mathematical modelling. 

As such a feed-forward back propagation network has been adapted to modelling the ME process. The 

factors 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are taken as the four input parameters, each of these are represented by one input 

neuron. Combined with the performance values; build time, material consumption and max torsional stress, 

they are used to train the model in MATLAB R2018b. Employing a the iterative method in Fig. 1Error! 

Reference source not found., this process was carried multiple times increasing the complexity of the 

network until an acceptable network accuracy was achieved. 

With the completion of the ANN training, each regression plot is examined to determine if further iterations 

are necessary, the R values of the graphs are indicators of the existing relationship between targets and 

outputs with; 

• R=1, there exists an exact linear relationship between targets and outputs 

• R close to 0, shows that there is no linear relationship existing. 

 

 

Figure 1: Iterative Process for Developing ANN 

 

The final plot can be seen in Fig. 2, with the three graphs representing the training, testing and overall data. 

The dashed lines which can be seen in the testing graph presents a perfect result, that is the output of the 

network maps perfectly on the target data fed into the network at the beginning. While the solid line 

represents the best fit linear regression line between the outputs and the targets, as seen in the test graph the 
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green line is slightly off centre indicating that there isn’t an exact linear relationship between the targets 

and inputs. 

 

Figure 2: ANN Regression Plot 

 

4.3 Multi-Objective Optimization 

Each of the models developed via RSM and ANN is subjected to a multi-objective Genetic Algorithm (GA) 

optimization approach, to obtain the best possible theoretical parameter settings allowing for a desirable set 

of performance measures. For the implementation of this algorithm a multi-objective minimization problem 

with four decision variables and three objective functions was formulated as seen below with equation 6 

representing the RSM model and equation 7 representing the ANN model both of which are to be 

minimized. 

Y(x)=(𝐘𝟏(𝐱), 𝐘𝟐(𝐱), 𝐘𝟑(x)) (6) 

 

G(x)=(𝐆𝟏(𝐱), 𝐆𝟐(𝐱), 𝐆𝟑(x)) (7) 

 

Both objective functions are subjected to identical constraints as seen in Table 1. Table 3 displays the 

optimum settings from a set of 18 possible optimized solutions, with 𝑓1, 𝑓2 and  𝑓3 representing build time, 

material consumption and max torsional stress respectively. 

 

 

Table 3: Optimum Parameter Settings 

Index x1(°) x2(mm) x3(°) x4(mm) f1(min) f2(g) f3 (MPa) 

ANN-GA 62.49554 0.398577 0.137277 0.299908 42.71863 9.326206 64.0815 
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RSM-GA 83.02108 0.372367 0.010437 0.251815 43.39755 8.767202 74.5654 

 

Following the optimization of the models, these values were then used to validate each of them. It should 

be noted however that due to software (ideaMaker) limitations it is impossible to input the exact process 

parameter values into the slicing software, Table 4 displays the parameters as they were used in the software 

and the corresponding performance measures values achieved. 

Table 4: Validation Run 

Index x1(°) x2(mm) x3(°) x4(mm) f1(min) f2(g) f3 (MPa) 

ANN-GA 62 0.40 0 0.300 43 9.3 150.9207 

RSM-GA 83 0.37 0 0.2518 55 9.0 149.4788 

5. Discussion 

The main objective of this work was to investigate the relationship between the process parameters and the 

build time, material consumption and max torsional stress. It was seen that part orientation and layer 

thickness significantly impacted the number of layers of a specimen. High layer thickness combined with 

low part orientation angle positively impacted the build time and material consumption, as a smaller number 

of passes were necessary and less material being used to build support for overhang features. 

However, with increased orientation angles and decreasing layer thickness the specimens were able to 

withstand higher torsional stresses before failure, as increased number of layers aided in heat conduction 

resulting in proper bonding between rasters. Larger raster angles are preferred when there is a need to reduce 

build time and material consumption as it reduces the number of times the print head needs to change 

directions, while smaller angles are shown to aid in the strength aspect as it is seen to decrease significantly 

after 40°. 

With an increase in raster thickness there is a decrease in the amount of time spent performing the infill 

action, however this negatively impacts the material consumption as more material is deposited. While 

thicker rasters are seen to increase the max. torsional stress, this may be attributed to the fact that thicker 

rasters tend to retain heat better aiding in the diffusion welding process and also reducing the temperature 

gradient across the specimen. 

Examining the optimized solutions and validation runs data it is seen that the actual values compared to the 

predicted values of the max. torsional stress values differed greatly. It is possible that with the increased 

raster angles coupled with high raster widths may have aided in reducing void formation and increased the 

diffusion welding process reducing the chances of weak bonding between rasters. An increased in layer 

thickness combined with a part orientation of 0°, reduces the number of heating and cooling cycles leading 

to non-uniform temperature gradient generating thermal stresses which can lead to improved mechanical 

strength. 

6. Conclusions and Recommendations  

An attempt has been made in the present work to investigate the effects of four process parameters that is 

layer thickness, raster width, raster angle and part build orientation on the build time, material consumption 

and max. torsional stress of ME built specimens. The brittle anisotropic and brittle nature of ME processed 

ABS was established through the experimental results. Through the use of GA, which is one of the existing 

evolutionary approaches the optimal parameter settings were found. The investigations have shown the 

following. 
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1. Minimum layer thickness negatively impacts the build time and material consumption especially 

when paired with a high part orientation. However, specimens were able to withstand higher 

mechanical loading. 

2. Large raster angles should be avoided as it shown to decrease overall strength of specimens, though 

these large angles are shown to improve the build time and material consumption. 

3. Increased raster widths improved the build time and mechanical strength; however, these increases 

required more material be deposited. 

Future work can investigate further performance measures such as creep, vibration damping, cycling fatigue 

and wear characteristics. Employing the use of another DOE method such as a Q-optimal design as it allows 

for higher empirical/custom models to be fitter. The quantification of the effects of environmental variables 

such as build chamber temperature and humidity regarding the performance measures can be explored. 
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