
 The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020)

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020

506

CUDA-ACCELERATED FEATURE SELECTION
Sterling Ramroach1*, Jonathan Herbert2 and Ajay Joshi3

1,3Department of Electrical and Computer Engineering,
2Department of Computing and Information Technology,

The University of the West Indies at Saint Augustine.
1Email: sterling.ramroach@sta.uwi.edu *(Corresponding author)

2Email: jonathan.herbert@my.uwi.edu
3Email: ajay.joshi@sta.uwi.edu

Abstract: Identifying important features from high dimensional data is usually done using

one-dimensional filtering techniques. These techniques discard noisy attributes and those

that are constant throughout the data. This is a time-consuming task that has scope for

acceleration via high performance computing techniques involving the graphics processing

unit (GPU). The proposed algorithm involves acceleration via the Compute Unified Device

Architecture (CUDA) framework developed by Nvidia. This framework facilitates the

seamless scaling of computation on any CUDA-enabled GPUs. Thus, the Pearson

Correlation Coefficient can be applied in parallel on each feature with respect to the

response variable. The ranks obtained for each feature can be used to determine the most

relevant features to select. Using data from the UCI Machine Learning Repository, our

results show an increase in efficiency for multi-dimensional analysis with a more reliable

feature importance ranking. When tested on a high-dimensional dataset of 1000 samples

and 10,000 features, we achieved a 1,230-time speedup using CUDA. This acceleration

grows exponentially, as with any embarrassingly parallel task.

Keywords: CUDA, Feature Selection, High Performance Computing, Pearson

Correlation.

https://doi.org/10.47412/JUQG5057

1. Introduction

Processing high dimensional data is often computationally intense and timely. In most cases, high

dimensional data is noisy and contains random features that may not be relevant or useful. Feature selection

is the process by which relevant or important features are extracted from the total set of features. Noisy,

irrelevant and redundant features are removed to reduce the size of the data, which directly reduces

processing time [1]. Feature selection algorithms can be sorted into three categories: supervised, semi-

supervised, and unsupervised [1].

The Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming

model developed by NVIDIA for general computing on Graphical Processing Units (GPUs) [2]. This allows

for applications which take advantage of the Central Processing Unit (CPU) for sequential tasks and the

GPU for parallelisable tasks. For a CUDA program, it executes data-parallel functions called kernels on a

set of threads referred to as a grid [3]. Each grid consists of blocks and each block consists of threads. These

threads are identified by their block id and thread id based on the gridDim and blockDim variables that are

populated by CUDA [3].

https://doi.org/10.47412/JUQG5057

 The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020)

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020

507

In recent times, high-throughput experiments in various fields have led to a significant increase in the

volume and dimensionality of data produced. In Biology, genome sequencing and micro-array techniques

now produce datasets with more than 20,000 columns. This rate of increase of data production is also seen

across many other fields such as graph data generated by social networks or finance data generated by the

stock markets [5]. There is therefore a need for more reliable, cost-effective, and faster data mining

techniques and machine learning models which use the data [6–9]. Useful features can be extracted from

the data to reduce dimensionality by removing redundant or noisy features. Reducing the number of features

lessens the amount of data to be analysed and in some cases improves the classification accuracy of machine

learning models [10]. The inclusion of noisy and irrelevant features into any dataset corrupts the

interpretation of that dataset. Thus, feature reduction also contributes to illustrating the core signals in the

data. Thus, feature reduction also contributes to illustrating the core signals in the data. When feature

reduction is performed on classification datasets, the fluctuation of each attribute is compared against the

target. Using Pearson Correlation [11-13] as the feature selector, all attributes can be treated independently.

This technique is widely used for feature selection [11, 12]. Thus, this task is perfectly suited to GPU

computing [14].

2. Method

The feature selector of choice is the Pearson Correlation Coefficient [13, 15]. Similar to a Naive Bayes

classifier, the Pearson Correlation Coefficient treats all attributes as independent. A coefficient is generated

for each feature and via a user-defined threshold, the features with high coefficients are considered to be

more useful than those with lower coefficients. The population (Pearson) correlation is defined by the

following equations.

Given that we are using equation 1 on a sample, we will have to use the uncorrected sample estimators for

the covariance and variances to determine the correlation. They are defined as follows.

 The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020)

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020

508

Figure 1: Grid of Thread Blocks [4]

Using equation 6, we can determine the correlation between the feature variable and the response (target).

The top-K features are ranked, based on which has the highest correlation to the response. From this list of

features, we can select the best feature subset to use. Table 1 shows how the Pearson correlation coefficient

can be implemented for GPU computing via the CUDA framework. The GPU implementation requires the

host to pass the data to the GPU via CUDA kernels which are executed in parallel. The majority of the

speedup occurs at this stage. The __global__ identifier used tells the CUDA C++ compiler that the function

runs on the GPU and can be called from CPU code. Functions identified by __global__ are known as

kernels. These kernels along with any code that runs on the GPU is known as device code. Whereas code

that runs on the CPU is called host code. The code presented in Table 1 also uses a variable i, which tells

the function which thread to use to execute the computation. In our experiments, we let each feature’s

coefficient be calculated on its own thread. This is done simultaneously for all features using the

architecture illustrated in Fig. 1.

 The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020)

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020

509

In our experiments, we set out to show the extent to which CUDA can accelerate the Pearson Correlation

algorithm. All experiments were performed on a 64-bit Windows 10 operating system with an Intel(R) Core

(TM) i7-8750H CPU and an Nvidia GeForce GTX 1060 with 1,280 CUDA cores. All experiments were

performed on randomly generated datasets which simulates real world data in terms of size and

dimensionality.

Table 1: GPU Implementation

CUDA Feature Selection Function

__global__ void correlationCoefficient(const float *X, const float *Y, const int n, float* output){

 int sumX = 0, sumY = 0, sumXY = 0, sqSumX = 0, sqSumY = 0;

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n){

 sumX = sumX + X[i];

 sumY = sumY + Y[i];

 sumXY = sumXY + X[i] * Y[i];

 sqSumX = sqSumX + X[i] * X[i];

 sqSumY = sqSumY + Y[i] * Y[i];

 }

 output[i] = (float)(n * sumXY - sumX * sumY) / sqrt((float) ((n * sqSumX - sumX *

 sumX)* (n * sqSumY - sumY * sumY)));

}

3. Results and Discussion

When using the method described in section 2, the results in Table 2 were obtained when selecting variables

from a dataset of 1000 samples. The results were generated by running the experiments 10 times to calculate

the average runtime +/- the standard deviation.

 The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020)

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020

510

Table 2: CPU vs GPU average runtime and standard deviation

Number of Features K CPU Runtime (s) GPU Runtime (s)

1 0.8 +/- 0.75 0.16 +/- 0.12

10 1.2 +/- 0.40 0.16 +/- 0.12

100 2.8 +/- 0.98 0.16 +/- 0.12

1000 29 +/- 1.55 0.16 +/- 0.12

10000 246 +/- 10.83 0.20 +/- 0.12

We note that for a dataset of size 2 x 1000 (1 feature column and 1 target column), the CPU calculates the

Pearson correlation coefficient in half of the time taken by the GPU. This is a direct result of the overhead

of the memory accesses and transfers incurred by using the GPU. However, it is not feasible to use a feature

selector on a dataset with only 1 dimension. It was only included to provide a benchmark for higher

dimensional datasets. As the number of features grow by a factor of 10, so to does the time taken by the

CPU to calculate all coefficients. When compared to the GPU implementation, the time is constant until

the number of features approach 10,000. The initial overhead incurred by the setting up of the GPU to

compute these coefficients is justified when the number of features is greater than 1.

Figure 2: CPU vs GPU Runtime

Our parallel coefficient computing solution achieved a 1,230-time speedup from the conventional CPU

implementation for a dataset with 10,000 features. For all experiments, the average speedup achieved by

the GPU is 286.25. Figure 2 shows that as the number of features increases, the runtime of the program

scales exponentially. For higher dimensional datasets, there can be significant performance improvements

if a CUDA enabled GPU is used to accelerate feature selection. Feature selection via the Pearson correlation

coefficient is an example of an embarrassingly parallel problem. Using parallel processing, significant

acceleration can remedy this problem.

 The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020)

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020

511

4. Conclusion

Feature selection removes noisy or irrelevant variables in high dimensional data. This reduces the

processing time needed to build machine learning models. We use the Pearson Correlation Coefficient as a

method for determining which features are highly correlated with a target and are thus most important in

the data. Since we use the Pearson Correlation Coefficient, we can treat our features as independent of each

other and use GPUs to process them individually. This accelerates the feature selection process for datasets

with a large number of features. CUDA provides a framework to effectively use the compute power of a

GPU for parallelisable general-purpose computing. A CUDA kernel can be defined to do the correlation

calculations between features and the target. This effective use of a GPU gives a 286.25 times speedup on

average across all of the experiments compared to the CPU execution and a max speedup of 1230 times

compared to CPU execution.

References

[1] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers & Electrical

Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[2] J. Nickolls, I. Buck, and M. Garland, “Scalable parallel programming,” in 2008 IEEE Hot Chips 20

Symposium (HCS), pp. 40–53, IEEE, 2008.

[3] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel processors: a hands-on approach.

Morgan kaufmann, 2016.

[4] D. Guide, “Cuda c programming guide,” NVIDIA, July, 2013.

[5] O. Soufan, D. Kleftogiannis, P. Kalnis, and V. B. Bajic, “Dwfs: a wrapper feature selection tool based

on a parallel genetic algorithm,” PloS one, vol. 10, no. 2,p. e0117988, 2015.

[6] M.-S. Yang and K. P. Sinaga, “A feature-reduction multi-view k-means clustering algorithm,” IEEE

Access, vol. 7, pp. 114472–114486, 2019.

[7] F. Li, Y. Yin, J. Shi, X. Mao, and R. Shi, “Method of feature reduction in short text classification based

on feature clustering,” Applied Sciences, vol. 9, no. 8, p. 1578,2019.

[8] S. Xu, X. Yang, H. Yu, D.-J. Yu, J. Yang, and E. C. Tsang, “Multi-label learning with label-specific

feature reduction,” Knowledge-Based Systems, vol. 104, pp. 52–61, 2016.

[9] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduction and selection for emg signal

classification,” Expert systems with applications, vol. 39,no. 8, pp. 7420–7431, 2012.

[10] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of machine

learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[11] N. Nekuri, and M. Sookshma. “Adaptive Feature Selection and Classification Using Optimization

Technique.” In Frontiers in Intelligent Computing: Theory and Applications, pp. 146-155. Springer,

Singapore, 2020.

[12] S. Eulalia, J. Kacprzyk, and P. Bujnowski. “Attribute Selection via Hellwig’s Algorithm for

Atanassov’s Intuitionistic Fuzzy Sets.” In Computational Intelligence and Mathematics for Tackling

Complex Problems, pp. 81-90. Springer, Cham, 2020.

[13] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise reduction in

speech processing, pp. 1–4, Springer, 2009.

[14] J. Gonzalez-Domınguez, R. R. Exposito, and V. BolonCanedo, “Cuda-jmi: Acceleration of feature

selection on heterogeneous systems,” Future Generation Computer Systems, vol. 102, pp. 426–436, 2020.

[15] T. D. V. Swinscow, M. J. Campbell,et al.,Statistics at square one. Bmj London,2002.

