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Abstract: Identifying important features from high dimensional data is usually done using 

one-dimensional filtering techniques. These techniques discard noisy attributes and those 

that are constant throughout the data. This is a time-consuming task that has scope for 

acceleration via high performance computing techniques involving the graphics processing 

unit (GPU). The proposed algorithm involves acceleration via the Compute Unified Device 

Architecture (CUDA) framework developed by Nvidia. This framework facilitates the 

seamless scaling of computation on any CUDA-enabled GPUs. Thus, the Pearson 

Correlation Coefficient can be applied in parallel on each feature with respect to the 

response variable. The ranks obtained for each feature can be used to determine the most 

relevant features to select. Using data from the UCI Machine Learning Repository, our 

results show an increase in efficiency for multi-dimensional analysis with a more reliable 

feature importance ranking. When tested on a high-dimensional dataset of 1000 samples 

and 10,000 features, we achieved a 1,230-time speedup using CUDA. This acceleration 

grows exponentially, as with any embarrassingly parallel task. 

Keywords: CUDA, Feature Selection, High Performance Computing, Pearson 

Correlation. 
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1. Introduction

Processing high dimensional data is often computationally intense and timely. In most cases, high 

dimensional data is noisy and contains random features that may not be relevant or useful. Feature selection 

is the process by which relevant or important features are extracted from the total set of features. Noisy, 

irrelevant and redundant features are removed to reduce the size of the data, which directly reduces 

processing time [1]. Feature selection algorithms can be sorted into three categories: supervised, semi-

supervised, and unsupervised [1]. 

The Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming 

model developed by NVIDIA for general computing on Graphical Processing Units (GPUs) [2]. This allows 

for applications which take advantage of the Central Processing Unit (CPU) for sequential tasks and the 

GPU for parallelisable tasks. For a CUDA program, it executes data-parallel functions called kernels on a 

set of threads referred to as a grid [3]. Each grid consists of blocks and each block consists of threads. These 

threads are identified by their block id and thread id based on the gridDim and blockDim variables that are 

populated by CUDA [3]. 

https://doi.org/10.47412/JUQG5057
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In recent times, high-throughput experiments in various fields have led to a significant increase in the 

volume and dimensionality of data produced. In Biology, genome sequencing and micro-array techniques 

now produce datasets with more than 20,000 columns. This rate of increase of data production is also seen 

across many other fields such as graph data generated by social networks or finance data generated by the 

stock markets [5]. There is therefore a need for more reliable, cost-effective, and faster data mining 

techniques and machine learning models which use the data [6–9]. Useful features can be extracted from 

the data to reduce dimensionality by removing redundant or noisy features. Reducing the number of features 

lessens the amount of data to be analysed and in some cases improves the classification accuracy of machine 

learning models [10]. The inclusion of noisy and irrelevant features into any dataset corrupts the 

interpretation of that dataset. Thus, feature reduction also contributes to illustrating the core signals in the 

data. Thus, feature reduction also contributes to illustrating the core signals in the data. When feature 

reduction is performed on classification datasets, the fluctuation of each attribute is compared against the 

target. Using Pearson Correlation [11-13] as the feature selector, all attributes can be treated independently. 

This technique is widely used for feature selection [11, 12]. Thus, this task is perfectly suited to GPU 

computing [14].  

2. Method 

The feature selector of choice is the Pearson Correlation Coefficient [13, 15]. Similar to a Naive Bayes 

classifier, the Pearson Correlation Coefficient treats all attributes as independent. A coefficient is generated 

for each feature and via a user-defined threshold, the features with high coefficients are considered to be 

more useful than those with lower coefficients. The population (Pearson) correlation is defined by the 

following equations.  

 

 

 

Given that we are using equation 1 on a sample, we will have to use the uncorrected sample estimators for 

the covariance and variances to determine the correlation. They are defined as follows. 
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Figure 1: Grid of Thread Blocks [4] 

 

Using equation 6, we can determine the correlation between the feature variable and the response (target). 

The top-K features are ranked, based on which has the highest correlation to the response. From this list of 

features, we can select the best feature subset to use. Table 1 shows how the Pearson correlation coefficient 

can be implemented for GPU computing via the CUDA framework. The GPU implementation requires the 

host to pass the data to the GPU via CUDA kernels which are executed in parallel. The majority of the 

speedup occurs at this stage. The __global__ identifier used tells the CUDA C++ compiler that the function 

runs on the GPU and can be called from CPU code. Functions identified by __global__ are known as 

kernels. These kernels along with any code that runs on the GPU is known as device code. Whereas code 

that runs on the CPU is called host code. The code presented in Table 1 also uses a variable i, which tells 

the function which thread to use to execute the computation. In our experiments, we let each feature’s 

coefficient be calculated on its own thread. This is done simultaneously for all features using the 

architecture illustrated in Fig. 1.  
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In our experiments, we set out to show the extent to which CUDA can accelerate the Pearson Correlation 

algorithm. All experiments were performed on a 64-bit Windows 10 operating system with an Intel(R) Core 

(TM) i7-8750H CPU and an Nvidia GeForce GTX 1060 with 1,280 CUDA cores. All experiments were 

performed on randomly generated datasets which simulates real world data in terms of size and 

dimensionality.  

 

 

Table 1: GPU Implementation 

CUDA Feature Selection Function 

__global__ void correlationCoefficient(const float *X, const float *Y, const int n, float* output){ 

     

    int sumX = 0, sumY = 0, sumXY = 0, sqSumX = 0, sqSumY = 0; 

 

    int i = blockIdx.x * blockDim.x + threadIdx.x; 

 

    if (i < n){  

        sumX = sumX + X[i]; 

        sumY = sumY + Y[i]; 

        sumXY = sumXY + X[i] * Y[i]; 

        sqSumX = sqSumX + X[i] * X[i]; 

        sqSumY = sqSumY + Y[i] * Y[i]; 

    } 

 

   output[i] = (float)(n * sumXY - sumX * sumY) / sqrt((float) ((n * sqSumX - sumX *  

                     sumX)* (n * sqSumY - sumY * sumY))); 

} 

 

3. Results and Discussion 

When using the method described in section 2, the results in Table 2 were obtained when selecting variables 

from a dataset of 1000 samples. The results were generated by running the experiments 10 times to calculate 

the average runtime +/- the standard deviation.  
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Table 2: CPU vs GPU average runtime and standard deviation 

Number of Features K CPU Runtime (s) GPU Runtime (s) 

1 0.8 +/- 0.75 0.16 +/- 0.12 

10 1.2 +/- 0.40 0.16 +/- 0.12 

100 2.8 +/- 0.98 0.16 +/- 0.12 

1000 29 +/- 1.55 0.16 +/- 0.12 

10000 246 +/- 10.83 0.20 +/- 0.12 

 

We note that for a dataset of size 2 x 1000 (1 feature column and 1 target column), the CPU calculates the 

Pearson correlation coefficient in half of the time taken by the GPU. This is a direct result of the overhead 

of the memory accesses and transfers incurred by using the GPU. However, it is not feasible to use a feature 

selector on a dataset with only 1 dimension. It was only included to provide a benchmark for higher 

dimensional datasets. As the number of features grow by a factor of 10, so to does the time taken by the 

CPU to calculate all coefficients. When compared to the GPU implementation, the time is constant until 

the number of features approach 10,000. The initial overhead incurred by the setting up of the GPU to 

compute these coefficients is justified when the number of features is greater than 1.  

 

 

Figure 2: CPU vs GPU Runtime 

Our parallel coefficient computing solution achieved a 1,230-time speedup from the conventional CPU 

implementation for a dataset with 10,000 features. For all experiments, the average speedup achieved by 

the GPU is 286.25. Figure 2 shows that as the number of features increases, the runtime of the program 

scales exponentially. For higher dimensional datasets, there can be significant performance improvements 

if a CUDA enabled GPU is used to accelerate feature selection. Feature selection via the Pearson correlation 

coefficient is an example of an embarrassingly parallel problem. Using parallel processing, significant 

acceleration can remedy this problem.  
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4. Conclusion  

Feature selection removes noisy or irrelevant variables in high dimensional data. This reduces the 

processing time needed to build machine learning models. We use the Pearson Correlation Coefficient as a 

method for determining which features are highly correlated with a target and are thus most important in 

the data. Since we use the Pearson Correlation Coefficient, we can treat our features as independent of each 

other and use GPUs to process them individually. This accelerates the feature selection process for datasets 

with a large number of features. CUDA provides a framework to effectively use the compute power of a 

GPU for parallelisable general-purpose computing. A CUDA kernel can be defined to do the correlation 

calculations between features and the target. This effective use of a GPU gives a 286.25 times speedup on 

average across all of the experiments compared to the CPU execution and a max speedup of 1230 times 

compared to CPU execution. 
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