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Abstract: To design an efficient device or to calculate the performance of existing device requires an 

accurate analysis of parameters involved in the system. In this work, an efficient front tracking finite 

difference method is developed to solve one dimensional single phase moving boundary problem with 

Neumann condition. The basic difficulty apart from the need to find the moving boundary presented, that 

there is no domain for the first phase at initial time. This difficulty is handled by the age old principle of 

basic mathematics. Naturally, giving symbolic names to the unknowns by modelling the problem, 

governing equations are developed with the conditions of the Stefan type problem, solved it and compared 

the obtained solutions with existing results wherever possible.  
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1. Introduction 

Stefan problems occur during the heat flow with phase change and dependent on time. The practical 

applications are melting of ice, solidification of steel, industrial metal processing and medical sciences, 

where particular cancer cells may be destroyed under extremely cold conditions (cryosurgery). Thus, the 

boundary separating two phases develop and moves. The position of moving boundary can be treated as 

the part of solution process. As two conditions are required on the moving boundary itself and the other to 

find the solution of differential equation. Let a thin rod of a solid material is melted by supplying heat at 

one end melting takes place and the interface keeps on moving. By modelling the physical problem a 

parabolic partial differential equation can be obtained, which is to be solved by an approximate 

computational method. 

Starting with any standard numerical method is not possible as the initial domain for 𝑥 does not exist. An 

extensive interest was shown by a large number of researchers to develop approximate methods for solving 

these types of problems. Reference is made to the excellent book by J. Crank [1] among others describing 

these efforts. Only one method proposed by Douglas and Ghallie [2] is relevant to us in the context of the 

method to be developed. For a fixed space step, they are the first to use variable time step sizes to track the 

front. Gupta and Kumar [7] have subsequently improved the iterative procedure of [2] for finding the time 

step. The method in reference [2] will be taken up after developing our finite difference front tracking 

method. Gupta and Kumar [7] and Marshall [4] have subsequently improved the iterative procedure of [2] 

for finding the time step. Kutluay et al. [3] obtained numerical solution of a specific problem with variable 

space grid. Even these front tracking methods have made certain transformations of the original problem 

before writing down the finite difference method. We keep the problem as it occurred in formulation and 

use the finite difference method applicable to any parabolic problem. One dimensional Stefan problem 
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related methodology available in [9-11]. By a theorem of Koneru and Lalli [8], for every iteration of the 

finite difference equations, convergence is assured. 

Another approach relevant to us is the well-known method of lines developed Mayer [6]. He discretized 

the mathematical problem with respect to time resulting in a system of ordinary differential equations with 

respect to space variable. He obtained at each time level, the position of the interface by solving the 

boundary conditions followed by the solution of the system using Euler’s method. We can interpret the 

present work as discretization of space first and solving the ordinary differential equations in time by 

modified Euler’s method i.e. Crank Nicholson scheme while finding the points on the interface. The method 

of lines is, of course, possible only for finite domain of the space variable.   

2. Formulation of the Method of Solution 

2.1 Preliminary Setup of the Method 

When we ignore the heat diffusion in the solid phase of the problem considered, mathematical modelling 

of the problem (non-dimensional form and melting temperature normalized to zero) gets reduced to the 

form given [1] as 

𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2
, 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0                                                                                                        (2.1) 

𝑠(0) = 0; 𝑇(𝑥, 0) = 0, 𝑇(𝑠(𝑡), 𝑡) = 0                                                                                            (2.2) 

 
𝜕𝑇

𝜕𝑥
= 𝑔(𝑡), 𝑎𝑡 𝑥 = 0                                                                                                                       (2.3) 

𝛽
𝑑𝑠

𝑑𝑡
= −

𝜕𝑇

𝜕𝑥
|𝑥=𝑠(𝑡)                                                                                                                           (2.4) 

Let h be a fixed given discrete step size in space. Let 𝑘1, 𝑘2, … be the time intervals needed for the front 

(interface) to move this specified distance of h. If  𝑇𝑖,𝑛  is the temperature at 𝑥𝑖 = 𝑖ℎ,  𝑡𝑛 = ∑ 𝑘𝑙
𝑛
𝑙=1 ; 

𝑇𝑖,𝑛 = 0, 𝑖 ≥ 𝑛;  𝑖 = 𝑛 gives a point on the interface. 
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Fig.1 Moving boundary with fixed space step and variable time step. 

 

Crank-Nicholson scheme for the diffusion Eq. (2.1) is 
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𝑇𝑖,𝑛+1−𝑇𝑖,𝑛

𝑘𝑛+1
=

1

2ℎ2
[(𝑇𝑖−1,𝑛+1 − 2𝑇𝑖,𝑛+1 + 𝑇𝑖+1,𝑛+1) + (𝑇𝑖−1,𝑛 − 2𝑇𝑖,𝑛 + 𝑇𝑖+1,𝑛)]           (2.5) 

 

 Sometimes we need the fully implicit scheme obtained as (for manipulations at a later stage) 

 𝑇𝑖,𝑛+1−𝑇𝑖,𝑛

𝑘𝑛+1
=

1

ℎ2
(𝑇𝑖−1,𝑛+1 − 2𝑇𝑖,𝑛+1 + 𝑇𝑖+1,𝑛+1)                                                            (2.6) 

The finite difference scheme Eq. (2.5) is of second order in space and time and is computationally stable. 

To enable us using this scheme, we need to know T at three points, (0,2), (1,2) and (2,2) as in Fig. 1. At 

these three points; 𝑇2,2 = 0, 𝑇0,2 and 𝑇1,2 are not known. In this problem of Neumann condition, we 

incorporate the condition into the difference scheme at (0, 1), (0, 2). To know these starting ingredients, we 

need to find 𝑘1 and 𝑘2. The method developed in this article hinges on one’s ability to find 𝑘1 and  𝑘2. 

Once we do this, we can find 𝑇0,3,  𝑇1,3, 𝑇2,3 provided  𝑘3, the time needed for the interface to move a 

distance of h is known. We can continue to solve the diffusion equation for  n=3, 4, 5..… number of points 

along the line parallel to x-axis increasing by one. In subsection 2.2, we derive equations to find 𝑘1 and 𝑘2. 

In subsection 2.3, we develop an iterative procedure to find 𝑘𝑛, for 𝑛 ≥ 3 and give the computational 

procedure as an algorithm, this subsubsection 2.3.1. In section 3, an example is given. The example 

originally considered in [2], which is interpreted in terms of our method and the algorithm developed is 

analysed.  

2.2 Finding 𝒌𝟏 and 𝒌𝟐 

For a given h, one needs to find  𝑘1, 𝑘2, 𝑇0,1, 𝑇0,2 𝑎𝑛𝑑 𝑇1,2. Hence we need to develop sufficient number of 

equations to obtain these five ingredients. To our knowledge there are three ways, other than series 

expansion, one can generate these equations. 

(i) Application of Green’s theorem of vector calculus to a closed region over which the problem 

is defined. We have several choices in choosing this region. 

(ii) Collocation at one or more points of the front. 

(iii) Finite difference equivalents of the parabolic equation at chosen points of  the lines 𝑡 =
𝑡1 𝑜𝑟 𝑡 = 𝑡2. 

These choices may vary from problem to problem depending on the available data and is also a matter 

of convenience for solving these equations. Neither we can collocate nor can we use the basic equation 

at ′𝑂′. Greens theorem comes handy in this situation. Using this theorem 

∬(𝑇𝑥𝑥 − 𝑇𝑡)𝑑𝑥𝑑𝑡 = 0 = ∮(𝑇𝑥𝑑𝑡 + 𝑇𝑑𝑥)

𝐶𝑂𝑃𝑆𝑂

 

where ‘C’ is the boundary of the closed region under consideration. 

∫ 𝑇𝑥𝑑𝑡 + ∫𝑇𝑑𝑥

ℎ

0

+∫𝑇𝑥𝑑𝑡

𝑂

𝑆

= 0 𝑎𝑠 𝑇 = 0 𝑎𝑙𝑜𝑛𝑔  𝑆𝑂

𝑘1

0

 

We use Trapezoidal rule for the first two integrals and noting that 𝑇𝑥 = −𝛽
𝑑𝑆

𝑑𝑡
  𝑎𝑙𝑜𝑛𝑔 𝑆𝑂; 

∮ 𝑇𝑥𝑑𝑡 = 𝛽 ∫ (−𝑑𝑠) = 𝛽ℎ.
0

ℎ
 

𝑂

𝑆
The above relation reduces to  

𝑘1

2
(𝑔(0) + 𝑔(𝑘1)) +

ℎ

2
𝑇(0,1) + 𝛽ℎ = 0                                                                                        (3.1) 
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We obtain another relation by finite difference equivalent to the basic Eqn. (2.1) at P as 

𝑇0,1−0

𝑘1
=

1

ℎ2
[𝑇1,1 − 2𝑇0,1 + 𝑇−1,1]                                                           (3.2)  

and 𝑇−1,1 is evaluated using 𝑇𝑥 = 𝑔(𝑡). That is, 
𝑇1,1−𝑇−1,1

2ℎ
= 𝑔(𝑘1), which gives 

  𝑇−1,1 = −2ℎ𝑔(𝑘1). Thus, the Eq. (3.2) reduces to 

   𝑇0,1 = −
2ℎ𝑘1

ℎ2+2𝑘1
𝑔(𝑘1)                                                                                                         (3.3) 

We obtain from Eq. (3.1) as 

𝑘1(ℎ
2 + 2𝑘1)[𝑔(0) + 𝑔(𝑘1)] − 2ℎ

2𝑘1𝑔(𝑘1) + 2𝛽ℎ(ℎ
2 + 2𝑘1) = 0                                (3.4) 

This equation can be solved for 𝑘1 and followed by 𝑇0,1 using Eq. (3.3). 

      Now we consider the region PQRS for the application of Green’s theorem and collocation  

      at R and finite difference form of the basic equation at L, gives 

𝑘2

2
[𝑔(𝑘1) + 𝑔(𝑘1 + 𝑘2)] +

ℎ

3
[𝑇0,2 + 4𝑇1,2] + 𝛽ℎ −

ℎ

2
[0 + 𝑇0,1] = 0. By collocation at R, 

𝜕𝑇

𝜕𝑥
= −β

𝑑𝑆

𝑑𝑡
,  

1

2ℎ
(𝑇0,2 − 4𝑇1,2) = −𝛽

ℎ

𝑘2
                                                                                                       (3.5) 

At L, we have  
𝑇1,2−𝑇1,1

𝑘2
=

1

ℎ2
[𝑇2,2 − 2𝑇1,2 + 𝑇0,2] , simplifying to  𝑇1,2 =

𝑘2𝑇0,2

ℎ2+2𝑘2
 from Eq. (3.5) and the 

last relation, we can obtain as    𝑇0,2 =
2𝛽ℎ2(ℎ2+2𝑘2)

𝑘2(2𝑘2−ℎ
2)
   𝑎𝑛𝑑      𝑇1,2 =

2𝛽ℎ2

(2𝑘2−ℎ
2)

                                                          

 𝑇0,2 + 4 𝑇1,2 =
2𝛽ℎ2(ℎ2+6𝑘2)

𝑘2(2𝑘2−ℎ
2)

                                                                                                     (3.6) 

With this last relation and Eq. (3.4), we have the equation for 𝑘2 as 

3𝑘2(2𝑘2 − ℎ
2){𝑘2[𝑔(𝑘1) + 𝑔(𝑘1 + 𝑘2)] + 2𝛽ℎ − ℎ𝑇0,1} + 4𝛽ℎ

3(ℎ2 + 6𝑘2) = 0               (3.7) 

Knowing 𝑘1,  we can solve this equation for  𝑘2. 

NOTE: One can choose the region SLRS for the application of Green’s theorem. In place of collocation at 

R, we can use finite difference equivalent at Q, as well. It is ultimately the ease of obtaining 

𝑘2,   𝑇(0,1) 𝑎𝑛𝑑  𝑇(0,2) that decides the issue. These choices are considered later. 

2.3 Continuing Solution for Subsequent Time Steps 

We have (n+1) unknowns (𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛, 𝑘𝑛+1 at 𝑡 = 𝑡𝑛+1) with n equations coming from the Crank 

Nicholson scheme. Much needed another equation comes from the Stefan condition Eq. (2.4), using one 

sided three point finite difference approximations gives 

4𝑇𝑛,𝑛+1 − 𝑇𝑛−1,𝑛+1 = 2𝛽 ℎ
2 𝑘𝑛+1⁄                                                                                            (4.1) 

With 𝑖 = 𝑛 in the system Eq. (2.6) simplifying, we have   

𝑇𝑛,𝑛+1 =
𝑘𝑛+1

(ℎ2+2𝑘𝑛+!)
𝑇𝑛−1,𝑛+1                                                                                                     (4.2) 



             The International Conference on Emerging Trends in Engineering and Technology (IConETech-2020) 

Faculty of Engineering, The UWI, St. Augustine | June 1st – 5th, 2020 

 

743 

 (In fact, we cannot use Crank Nicolson scheme at (n, n+1), since point outside the domain occurs in the 

difference equation). When substituted in Eq. (4.1), we obtain 

𝑇𝑛−1,𝑛+1 =
2𝛽ℎ2(2𝑘𝑛+1+ℎ

2)

𝑘𝑛+1(2𝑘𝑛+1−ℎ
2)
                                                                                                         (4.3) 

and    𝑇𝑛,𝑛+1 =
2𝛽ℎ2

(2𝑘𝑛+1−ℎ
2)
                                                                                                             (4.4) 

Considering Eq. (4.3) as a quadratic in kn+1, the positive root can be obtained as: 

𝑘𝑛+1 =
ℎ2

4𝑇𝑛−1,𝑛+1
[ 𝑇𝑛−1,𝑛+1 + 4𝛽 + √(𝑇𝑛−1,𝑛+1 + 4𝛽)

2
+ 16𝛽𝑇𝑛−1,𝑛+1 ]                     (4.5) 

By considering the appendix, we have to choose 𝑘𝑛+1 as a function of 𝑇(𝑖,𝑛+1), 𝑖 = 1,2, … , 𝑛. For physical 

consideration of the problem, we have to incorporate the Stefan condition Eq. (4.1) into this functional 

development. This is achieved, in what follows, by aligning the discrete equivalent of the parabolic equation 

with the discrete equivalent of the Stefan condition. We can choose any initial approximation to 𝑘𝑛+1(> 0), 
solve the fully implicit scheme and obtain 𝑘𝑛+1 from the resultant value of 𝑇(𝑛,𝑛+1) of Eq. (4.4) as 

𝑘𝑛+1 =
ℎ2

2𝑇𝑛,𝑛+1
(𝑇𝑛,𝑛+1 + 2𝛽)                                                                                             (4.6) 

By the manner in which the relations Eq. (4.2) and Eq. (4.3) are derived, any choice of  𝑘𝑛+1, satisfies the 

requirements for convergence. With this new value of 𝑘𝑛+1, repeat the process until convergence which is 

ensured. But Crank-Nicholoson scheme is more accurate than the fully implicit scheme; therefore, we 

decided to use this scheme as follows: 

Choose an initial approximation for  𝑘𝑛+1 ; calculate 𝑇𝑛,𝑛+1 using Eq. (4.4). Solve the finite difference 

equations for i = 1, 2… n-1 with 𝑇𝑛,𝑛+1 as a boundary condition. From the resultant value for 𝑇𝑛−1,𝑛+1, 

obtain 𝑘𝑛+1 from the relation Eq. (4.5). Calculate 𝑇𝑛,𝑛+1 using Eq. (4.4) and solve the difference equations 

as earlier. Repeat the process until desired degree of accuracy obtained. 

2.3.1 Algorithm 

Step 1: Obtain 𝑘1 followed by 𝑘2 from Eq. (3.3) and Eq. (3.7). Obtain 𝑇0,1 and 𝑇0,2 and 𝑇1,2 from Eq. (3.2) 

and Eq. (3.6). 

Step 2: Assume 𝑘𝑛+1  (possibly, as  2 𝑘𝑛 − 𝑘𝑛−1) 

Step 3: Obtain 𝑇𝑛,𝑛+1 from Eq. (4.4) 

Step 4: Solve the tri-diagonal system Eq. (2.1) for i = 1, 2, 3… n-1, using 𝑇𝑛,𝑛+1 as a boundary condition.  

STEP5: Knowing  𝑇𝑛−1,𝑛+1, obtain 𝑘𝑛+1 from Eq. (4.5). Repeat the steps 3, 4, 5, until convergence 

achieved. 

3. Example 

The problem considered by Douglas and Gallie [2] later improved by Gupta and Kumar [3] is considered 

here to compute and compare the results obtained using the method developed here. The results are 

summarized in the following table. 1. 
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Table. 1 Points on the front for  𝒈(𝒕) = −𝟏;  𝜷 = 𝟏. 

x Present Results   Results of Gupta & Kumar 

h=0.02                                                                                         h=0.01    h=0.1                     h=0.01 

0.2 0.2194 0.2188  0.2091 0.2172 

0.6 0.7464 0.7447  0.7186 0.7406 

1 1.3697 1.3672  1.3285 1.3604 

1.6 2.4584 2.455  2.3944 2.4413 

2 3.2762 3.2723  3.1993 3.2522 

2.6 4.6294 4.0249  3.534 4.5916 

3 5.6108 5.606  5.5004 5.5399 

5 11.384 11.3787  -------- -------- 

            

4. Observation and Analysis  

This example considered by Douglas [2] and improved by Gupta and Kumar [7] and Marshall [4] is used 

in the development of the numerical method. The same problem is solved by our method developed in the 

paper and compared the solution with their solution. It is confirmed that working of our method is not 

affected by the value of β in reference [10]. The accuracy achieved in the estimation of k1 and k2 for a given 

h depends on the approximation used for the integrands and the integration formulae while evaluating the 

line integrals. We observed that it is at least of second order in our calculations. Higher order accuracy can 

perhaps be obtained by improving these approximations. We hope this technique of applying Green’s 

Theorem may be useful in applications elsewhere. The iterative method for finding kn+1 may be useful in 

problems where one relation is different from rest of the relations. In fact we tried with various starting 

approximations for kn+1 (say 5 or even10), where convergence occurred smoothly. Of- course number of 

iterations increased from 1 or 2 to 5 or 6.  As a last remark, we want to mention that the algorithm developed 

in the paper is simple and easy to implement through computer programming compared to other methods 

available in literature. We hope the methodology developed here sets the tone for solving the two phase 

problems also. 

5. Conclusion 

As a conclusion highlights of this work includes  

• Use of Green’s theorem to obtain starting parameters needed to develop the full algorithm. 

• A powerful grinding machine (iterative process) is developed for finding the subsequent time steps;  

• This method can be effectively used for finding the time steps while solving all moving boundary 

problems with the sign of the discrete form of the Stefan conditions. 
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